Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Med (Lond) ; 24(3): 100209, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642613

RESUMO

BACKGROUND: Minority ethnic groups have often been underrepresented in research, posing a problem in relation to external validity and extrapolation of findings. Here, we aimed to assess recruitment and retainment strategies in a large observational study assessing neurological complications following SARS-CoV-2 infection. METHODS: Participants were recruited following confirmed infection with SARS-CoV-2 and hospitalisation. Self-reported ethnicity was recorded alongside other demographic data to identify potential barriers to recruitment. RESULTS: 807 participants were recruited to COVID-CNS, and ethnicity data were available for 93.2%. We identified a proportionate representation of self-reported ethnicity categories, and distribution of broad ethnicity categories mirrored individual centres' catchment areas. White ethnicity within individual centres ranged between 44.5% and 89.1%, with highest percentage of participants with non-White ethnicity in London-based centres. Examples are provided how to reach potentially underrepresented minority ethnic groups. CONCLUSIONS: Recruitment barriers in relation to potentially underrepresented ethnic groups may be overcome with strategies identified here.

3.
Wellcome Open Res ; 8: 390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38434734

RESUMO

Introduction: A common neurosurgical condition, chronic subdural haematoma (cSDH) typically affects older people with other underlying health conditions. The care of this potentially vulnerable cohort is often, however, fragmented and suboptimal. In other complex conditions, multidisciplinary guidelines have transformed patient experience and outcomes, but no such framework exists for cSDH. This paper outlines a protocol to develop the first comprehensive multidisciplinary guideline from diagnosis to long-term recovery with cSDH. Methods: The project will be guided by a steering group of key stakeholders and professional organisations and will feature patient and public involvement. Multidisciplinary thematic working groups will examine key aspects of care to formulate appropriate, patient-centered research questions, targeted with evidence review using the GRADE framework. The working groups will then formulate draft clinical recommendations to be used in a modified Delphi process to build consensus on guideline contents. Conclusions: We present a protocol for the development of a multidisciplinary guideline to inform the care of patients with a cSDH, developed by cross-disciplinary working groups and arrived at through a consensus-building process, including a modified online Delphi.

5.
Sci Rep ; 6: 37955, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27897253

RESUMO

The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3- transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3- removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H+ co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H+ secretion by secreting HCO3-, a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD.


Assuntos
Fibrose Cística/patologia , Hiperglicemia/fisiopatologia , Lactatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , Mucosa Respiratória/patologia , Células Cultivadas , Fibrose Cística/metabolismo , Fibrose Cística/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Mucosa Respiratória/metabolismo
6.
Cardiovasc Res ; 112(2): 581-589, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27389411

RESUMO

AIMS: Kv7.4, a voltage-dependent potassium channel expressed throughout the vasculature, controls arterial contraction and is compromised in hypertension by an unknown mechanism. MicroRNAs (miRs) are post-transcriptional regulators of protein production and are altered in disease states such as hypertension. We investigated whether miRs regulate Kv7.4 expression. METHODS AND RESULTS: In renal and mesenteric arteries (MAs) of the spontaneously hypertensive rat (SHR), Kv7.4 protein decreased compared with the normotensive (NT) rat without a decrease in KCNQ4 mRNA, inferring that Kv7.4 abundance was determined by post-transcriptional regulation. In silico analysis of the 3' UTR of KCNQ4 revealed seed sequences for miR26a, miR133a, miR200b, miR153, miR214, miR218, and let-7d with quantitative polymerase chain reaction showing miR153 increased in those arteries from SHRs that exhibited decreased Kv7.4 levels. Luciferase reporter assays indicated a direct targeting effect of miR153 on the 3' UTR of KCNQ4. Introduction of high levels of miR153 to MAs increased vascular wall thickening and reduced Kv7.4 expression/Kv7 channel function compared with vessels receiving a non-targeting miR, providing a proof of concept of Kv7.4 regulation by miR153. CONCLUSION: This study is the first to define a role for aberrant miR153 contributing to the hypertensive state through targeting of KCNQ4 in an animal model of hypertension, raising the possibility of the use of miR153-related therapies in vascular disease.

7.
J Cell Mol Med ; 20(4): 758-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26837005

RESUMO

Lung disease and elevation of blood glucose are associated with increased glucose concentration in the airway surface liquid (ASL). Raised ASL glucose is associated with increased susceptibility to infection by respiratory pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. We have previously shown that the anti-diabetes drug, metformin, reduces glucose-induced S. aureus growth across in vitro airway epithelial cultures. The aim of this study was to investigate whether metformin has the potential to reduce glucose-induced P. aeruginosa infections across airway epithelial (Calu-3) cultures by limiting glucose permeability. We also explored the effect of P. aeruginosa and metformin on airway epithelial barrier function by investigating changes in tight junction protein abundance. Apical P. aeruginosa growth increased with basolateral glucose concentration, reduced transepithelial electrical resistance (TEER) and increased paracellular glucose flux. Metformin pre-treatment of the epithelium inhibited the glucose-induced growth of P. aeruginosa, increased TEER and decreased glucose flux. Similar effects on bacterial growth and TEER were observed with the AMP activated protein kinase agonist, 5-aminoimidazole-4-carboxamide ribonucleotide. Interestingly, metformin was able to prevent the P. aeruginosa-induced reduction in the abundance of tight junction proteins, claudin-1 and occludin. Our study highlights the potential of metformin to reduce hyperglycaemia-induced P. aeruginosa growth through airway epithelial tight junction modulation, and that claudin-1 and occludin could be important targets to regulate glucose permeability across airway epithelia and supress bacterial growth. Further investigation into the mechanisms regulating metformin and P. aeruginosa action on airway epithelial tight junctions could yield new therapeutic targets to prevent/suppress hyperglycaemia-induced respiratory infections, avoiding the use of antibiotics.


Assuntos
Células Epiteliais/efeitos dos fármacos , Glucose/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Claudina-1/genética , Claudina-1/metabolismo , Técnicas de Cocultura , Impedância Elétrica , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucose/toxicidade , Humanos , Ocludina/genética , Ocludina/metabolismo , Permeabilidade/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Ribonucleotídeos/farmacologia , Junções Íntimas/metabolismo
8.
J Physiol ; 593(24): 5325-40, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26503181

RESUMO

KEY POINTS: KCNE4 alters the biophysical properties and cellular localization of voltage-gated potassium channel Kv7.4. KCNE4 is expressed in a variety of arteries and, in mesenteric arteries, co-localizes with Kv7.4, which is important in the control of vascular contractility. Knockdown of KCNE4 leads to reduced Kv7.4 membrane abundance, a depolarized membrane potential and an augmented response to vasoconstrictors. KCNE4 is a key regulator of the function and expression of Kv7.4 in vascular smooth muscle. ABSTRACT: The KCNE ancillary subunits (KCNE1-5) significantly alter the expression and function of voltage-gated potassium channels; however, their role in the vasculature has yet to be determined. The present study aimed to investigate the expression and function of the KCNE4 subunit in rat mesenteric arteries and to determine whether it has a functional impact on the regulation of arterial tone by Kv7 channels. In HEK cells expressing Kv7.4, co-expression of KCNE4 increased the membrane expression of Kv7.4 and significantly altered Kv7.4 current properties. Quantitative PCR analysis of different rat arteries found that the KCNE4 isoform predominated and proximity ligation experiments showed that KCNE4 co-localized with Kv7.4 in mesenteric artery myocytes. Morpholino-induced knockdown of KCNE4 depolarized mesenteric artery smooth muscle cells and resulted in their increased sensitivity to methoxamine being attenuated (mean ± SEM EC50 decreased from 5.7 ± 0.63 µm to 1.6 ± 0.23 µm), which coincided with impaired effects of Kv7 modulators. When KCNE4 expression was reduced, less Kv7.4 expression was found in the membrane of the mesenteric artery myocytes. These data show that KCNE4 is consistently expressed in a variety of arteries, and knockdown of the expression product leads to reduced Kv7.4 membrane abundance, a depolarized membrane potential and an augmented response to vasoconstrictors. The present study is the first to demonstrate an integral role of KCNE4 in regulating the function and expression of Kv7.4 in vascular smooth muscle.


Assuntos
Artérias Mesentéricas/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Vasoconstrição , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Potenciais da Membrana , Artérias Mesentéricas/fisiologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ratos , Ratos Wistar
9.
Proc Natl Acad Sci U S A ; 112(20): 6497-502, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941381

RESUMO

Kv7.4 channels are a crucial determinant of arterial diameter both at rest and in response to endogenous vasodilators. However, nothing is known about the factors that ensure effective activity of these channels. We report that G-protein ßγ subunits increase the amplitude and activation rate of whole-cell voltage-dependent K(+) currents sensitive to the Kv7 blocker linopirdine in HEK cells heterologously expressing Kv7.4, and in rat renal artery myocytes. In excised patch recordings, Gßγ subunits (2-250 ng /mL) enhanced the open probability of Kv7.4 channels without changing unitary conductance. Kv7 channel activity was also augmented by stimulation of G-protein-coupled receptors. Gallein, an inhibitor of Gßγ subunits, prevented these stimulatory effects. Moreover, gallein and two other structurally different Gßγ subunit inhibitors (GRK2i and a ß-subunit antibody) abolished Kv7 channel currents in the absence of either Gßγ subunit enrichment or G-protein-coupled receptor stimulation. Proximity ligation assay revealed that Kv7.4 and Gßγ subunits colocalized in HEK cells and renal artery smooth muscle cells. Gallein disrupted this colocalization, contracted whole renal arteries to a similar degree as the Kv7 inhibitor linopirdine, and impaired isoproterenol-induced relaxations. Furthermore, mSIRK, which disassociates Gßγ subunits from α subunits without stimulating nucleotide exchange, relaxed precontracted arteries in a linopirdine-sensitive manner. These results reveal that Gßγ subunits are fundamental for Kv7.4 activation and crucial for vascular Kv7 channel activity, which has major consequences for the regulation of arterial tone.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Hemodinâmica/fisiologia , Canais de Potássio KCNQ/metabolismo , Animais , Bovinos , Eletromiografia , Células HEK293 , Humanos , Imunoprecipitação , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
10.
Arterioscler Thromb Vasc Biol ; 34(4): 887-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24558103

RESUMO

OBJECTIVE: Middle cerebral artery (MCA) diameter is regulated by inherent myogenic activity and the effect of potent vasodilators such as calcitonin gene-related peptide (CGRP). Previous studies showed that MCAs express KCNQ1, 4, and 5 potassium channel genes, and the expression products (Kv7 channels) participate in the myogenic control of MCA diameter. The present study investigated the contribution of Kv7.4 and Kv7.5 isoforms to myogenic and CGRP regulation of MCA diameter and determined whether they were affected in hypertensive animals. APPROACH AND RESULTS: Isometric tension recordings performed on MCA from normotensive rats produced CGRP vasodilations that were inhibited by the pan-Kv7 channel blocker linopirdine (P<0.01) and after transfection of arteries with siRNA against KCNQ4 (P<0.01) but not KCNQ5. However, isobaric myography revealed that myogenic constriction in response to increases in intravascular pressure (20-80 mm Hg) was affected by both KCNQ4 and KCNQ5 siRNA. Proximity ligation assay signals were equally abundant for Kv7.4/Kv7.4 or Kv7.4/Kv7.5 antibody combinations but minimal for Kv7.5/Kv7.5 antibodies or Kv7.4/7.1 combinations. In contrast to systemic arteries, Kv7 function and Kv7.4 abundance in MCA were not altered in hypertensive rats. CONCLUSIONS: This study reveals, for the first time to our knowledge, that in cerebral arteries, Kv7.4 and Kv7.5 proteins exist predominantly as a functional heterotetramer, which regulates intrinsic myogenicity and vasodilation attributed to CGRP. Surprisingly, unlike systemic arteries, Kv7 activity in MCAs is not affected by the development of hypertension, and CGRP-mediated vasodilation is well maintained. As such, cerebrovascular Kv7 channels could be amenable for therapeutic targeting in conditions such as cerebral vasospasm.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Canais de Potássio KCNQ/metabolismo , Artéria Cerebral Média/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Canais KATP/metabolismo , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/genética , Masculino , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/fisiopatologia , Bloqueadores dos Canais de Potássio/farmacologia , Isoformas de Proteínas , Interferência de RNA , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Transfecção
11.
J Membr Biol ; 237(2-3): 115-23, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21057779

RESUMO

Topical zinc applications promote wound healing and epithelialization. "Leaky" MDCKII epithelia exposed to apical ZnCl2 (10 mM) showed a time-dependent increase (t (0.5) 22.2 ± 2.7 min) of transepithelial resistance (R (t)) from 82.3 ± 2.4 Ω cm² to 1,551 ± 225.6 Ω cm²; the increase was dose-dependent, being observed at 3 mM but not at 1 mM. Basal Zn²+ applications also increased epithelial resistance (at 10 mM to 323 ± 225.6 Ω cm²). The linear current-voltage relationship in control epithelia changed after apical 10 mM ZnCl2 to show rectification. Voltage deflections resulting from inward currents showed time-dependent relaxation (basal potential difference (p.d.)-positive), with outward currents being time-independent. Cation selectivity was tested after apical ZnCl2 elevated resistance; both the NaCl:mannitol (basal replacement) dilution p.d. and the choline:Na bi-ionic p.d. decreased (P(Na)/P(Cl) from 4.9 to 2.3 and P(Na)/P(choline) from 3.8 to 2.1, respectively). Transepithelial paracellular basal to apical 45Ca fluxes increased approximately twofold when driven by a basal positive Na:NMDG bi-ionic p.d., but with basal 10 mM ZnCl2, 45Ca fluxes decreased approximately twofold. Neither ZO-1 nor occludin distribution was altered after ~2-h exposure to apical 10 mM ZnCl2. However, claudin-2, though present at the tight junction, increased within the cell. Increased epithelial barrier resistance by Zn²+ is due to modification of the paracellular pathway, most probably by multiple mechanisms.


Assuntos
Células Epiteliais/efeitos dos fármacos , Animais , Linhagem Celular , Cloretos/farmacologia , Cães , Eletrofisiologia , Microscopia Confocal , Junções Íntimas/efeitos dos fármacos , Zinco , Compostos de Zinco/farmacologia
12.
Cell Physiol Biochem ; 24(5-6): 595-604, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19910700

RESUMO

BACKGROUND/AIMS: ANKH encodes a putative pyrophosphate transporter named ANKH, which regulates tissue calcification. ANKH is a transmembrane protein with at least 8 predicted transmembrane domains. Sequence analysis reveals a possible cilial localisation motif immediately after the last transmembrane segment. Here we aim to determine the subcellular localisation of ANKH in ciliated epithelial cells and murine tissue and identify colocalisation using ciliary/basal body markers. METHODS: Using murine kidney, renal epithelial cells and osteoblast cells we investigated the expression and localisation of ANKH using RT-PCR, Western blotting and immunocytochemistry. RESULTS: Here we confirm endogenous expression of ANKH mRNA and protein in whole mouse kidney as well as mouse renal epithelial cell lines M1 and mpkCCDcl4 and the osteoblast cell line MC3T3-E1. Using antibodies directed towards ANKH, we confirm cilial and basal body localisation in renal tissues and renal epithelial cells, in addition to a centrosomal localisation in dividing mpkCCDcl4 cells. We also establish that the osteoblast cell line MC3T3-E1 forms an epithelioid cell layer, with junctional complex formation and primary cilia expression. ANKH is also seen within cilial and basal body structures of MC3T3-E1 cells. An ANKH-3XFLAG construct expressed in mpkCCDcl4 cells also localises to the primary cilium/basal body complex confirming this localisation. CONCLUSION: We conclude that the transmembrane protein ANKH is expressed in cilia and basal body structures, and postulate a sensory role at this location.


Assuntos
Proteínas de Transporte de Ânions/análise , Osso e Ossos/metabolismo , Cílios/metabolismo , Rim/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Linhagem Celular , Humanos , Camundongos , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
Pancreas ; 38(8): 921-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19752774

RESUMO

OBJECTIVES: Low doses of chenodeoxycholate (CDC) stimulate apical anion exchange and HCO3(-) secretion in guinea pig pancreatic duct cells (Gut. 2008;57:1102-1112). We examined the effects of CDC on intracellular pH (pHi), intracellular Ca(2+) concentration ([Ca(2+)]i), and apical Cl(-)/HCO3(-) exchange activity in human pancreatic duct cells and determined whether any effects were dependent on cystic fibrosis transmembrane conductance regulator (CFTR) expression and Cl(-) channel activity. METHODS: Polarized CFPAC-1 cells (expressing F508del CFTR) were transduced with Sendai virus constructs containing complementary DNAs for either wild-type CFTR or beta-galactosidase. Microfluorimetry was used to record pHi and [Ca(2+)]i and apical Cl(-)/HCO3(-) exchange activity. Patch clamp experiments were performed on isolated guinea pig duct cells. RESULTS: Chenodeoxycholate induced a dose-dependent intracellular acidification and a marked increase in [Ca(2+)]i in CFPAC-1 cells. CFTR expression slightly reduced the rate of acidification but did not affect the [Ca(2+)]i changes. Luminal administration of 0.1 mmol/L of CDC significantly elevated apical Cl(-)/HCO3(-) exchange activity but only in cells that expressed CFTR. However, CDC did not activate CFTR Cl(-) conductance. CONCLUSIONS: Bile salts modulate pHi, [Ca(2+)]i, and apical anion exchange activity in human pancreatic duct cells. The stimulatory effect of CDC on anion exchangers requires CFTR expression but not CFTR channel activity.


Assuntos
Bicarbonatos/metabolismo , Ácido Quenodesoxicólico/farmacologia , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Relação Dose-Resposta a Droga , Cobaias , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Mutação , Ductos Pancreáticos/citologia , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/fisiologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transfecção
14.
Cell Physiol Biochem ; 20(5): 507-16, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17762177

RESUMO

BACKGROUND/AIMS: Mutation of the pyrophosphate transporter, ANK, results in progressive arthritis in mice. ANK is expressed in non-skeletal tissues including kidney. The aim was therefore to investigate ANK location at the cellular and subcellular level in renal cells. METHODS: RT-PCR identified a murine cell-line, mIMCD3, expressing ANK. The intra-renal distribution of ANK was determined by immunohistochemistry and the subcellular distribution in mIMCD3 cells by transfection of an ANK-NT-GFP fusion protein. Furthermore, an inactivating mutation of murine ank, Glu440X, and a gain of function mutation, Met48Thr, were tested to determine whether membrane traffic contributed to a transport defect. RESULTS: ANK is expressed in cells of the cortical collecting duct, as assessed by colocalisation with aquaporin 2 and at the lateral and apical plasma membranes of mIMCD-3 epithelial cells, as assessed by colocalisation with wheat germ agglutinin lectin (WGA). ANK-NT-GFP was also present in endoplasmic reticulum, Golgi, acidic endosomes and mitochondria. mIMCD3 expression of Glu440X ANK-NT-GFP shows evidence of Golgi retention whereas Met48Thr ANK-NT-GFP is unaltered at the plasma membrane compared to wild type. CONCLUSION: The intra-renal and subcellular localisation of ANK is consistent with pyrophosphate export from collecting duct cells and supports a role for ANK in limiting intra-renal calcium-crystal formation.


Assuntos
Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Animais , Linhagem Celular , Rim , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/metabolismo , Mutação/genética , Proteínas de Transporte de Fosfato/genética
15.
Pharm Res ; 23(3): 540-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16518580

RESUMO

PURPOSE: The aim of this study was to investigate transepithelial ionic permeation via the paracellular pathway of human Caco-2 epithelial monolayers and its contribution to absorption of the base guanidine. METHODS: Confluent monolayers of Caco-2 epithelial cells were mounted in Ussing chambers and the transepithelial conductance and electrical potential difference (p.d.) determined after NaCl dilution or medium Na substitution (bi-ionic conditions). Guanidine absorption (Ja-b) was measured +/- transepithelial potential gradients using bi-ionic p.d.'s. RESULTS: Basal NaCl replacement with mannitol gives a transepithelial dilution p.d. of 28.0 +/- 3.1 mV basal solution electropositive (PCl/PNa = 0.34). Bi-ionic p.d.'s (basal replacements) indicate a cation selectivity of NH4+ > K+ approximately Cs+ > Na+ > Li+ > tetraethylammonium+ > N-methyl-D: -glucamine+ approximately choline+. Transepithelial conductances show good correspondence with bi-ionic potential data. Guanidine Ja-b was markedly sensitive to imposed transepithelial potential difference. The ratio of guanidine to mannitol permeability (measured simultaneously) increased from 3.6 in the absence of an imposed p.d. to 13.8 (basolateral negative p.d.). CONCLUSIONS: Hydrated monovalent ions preferentially permeate the paracellular pathway (Eisenman sequence 2 or 3). Guanidine may access the paracellular pathway because absorptive flux is sensitive to the transepithelial potential difference. An alternative method to assess paracellular-mediated flux of charged organic molecules is suggested.


Assuntos
Células CACO-2/metabolismo , Guanidina/metabolismo , Condutividade Elétrica , Humanos , Absorção Intestinal , Cinética , Manitol/metabolismo , Potenciais da Membrana , Permeabilidade , Sódio/metabolismo
16.
Clin Sci (Lond) ; 106(6): 549-61, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15027893

RESUMO

Nephrocalcinosis may be defined as a generalized increase in the calcium content of the kidneys. This renal calcification may occur at a molecular, microscopic or macroscopic level leading to progressive amounts of renal damage. The major causes include those associated with an increase in urinary levels of calcium, oxalate and phosphate. Under these conditions, urine concentration and supersaturation leads to calcium crystal precipitation, which may be an intratubular event or initiate within the renal interstitium. The focus of discussion concerning renal calcification is often limited to factors that lead to renal stones (calculi and nephrolithiasis); however, nephrocalcinosis is a more sinister event, and often implies a serious metabolic defect. This review will discuss the hypotheses concerning initiating lesions of nephrocalcinosis using available laboratory and clinical studies and will examine whether new understanding of the molecular basis of tubulopathies, that lead to nephrocalcinosis, has given further insights.


Assuntos
Cálcio/metabolismo , Rim/metabolismo , Nefrocalcinose/etiologia , Síndrome de Bartter/complicações , Transporte Biológico/fisiologia , Precipitação Química , Humanos , Hiperoxalúria/complicações , Nefropatias/complicações , Medula Renal/metabolismo , Túbulos Renais/metabolismo , Nefrocalcinose/metabolismo , Oxalatos/metabolismo , Fosfatos/metabolismo
17.
Biochem Biophys Res Commun ; 310(2): 600-5, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-14521953

RESUMO

CLC-5 is a member of the CLC family of voltage-gated chloride channels. Mutations disrupting CLC-5 lead to Dent's disease, an X-linked renal tubular disorder, characterised by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis, and renal stones. Sequence analysis of CLC-5 reveals a 746 amino acid protein with an intracellular amino-terminus, transmembrane spanning domains, and two CBS domains within its intracellular carboxy-terminus. CBS domains have been implicated in intracellular targetting and trafficking as well as protein-protein interactions. We investigate subcellular localisation of three naturally occurring CLC-5 mutants which all lead to a truncated protein, disrupting the second CBS domain. These mutants are unable to traffic normally to acidic endosomes but are retained in perinuclear compartments, colocalising with the Golgi complex. This is the first identification of the cellular pathogenesis of CBS domain mutations of CLC-5.


Assuntos
Canais de Cloreto/química , Canais de Cloreto/metabolismo , Animais , Células CHO , Linhagem Celular , Canais de Cloreto/genética , Cricetinae , Cistationina beta-Sintase/química , Camundongos , Microscopia Confocal , Mutação , Estrutura Terciária de Proteína , Transporte Proteico
18.
Biochem Biophys Res Commun ; 300(2): 305-10, 2003 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-12504084

RESUMO

Dent's disease, an X-linked tubulopathy secondary to defects in chloride channel CLC-5, is characterised by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis, and renal stones. Mechanisms leading to nephrocalcinosis are unknown. Using a murine collecting duct cell line (mIMCD-3), we confirm endogenous expression of mCLC-5. During transfection of antisense CLC-5, we observe a reduction in CLC-5 protein expression that correlates with a reduction in the number of acidic endosomal compartments, as determined by quantitative analysis of confocal microscope images using LysoTracker Red. Using wheat germ agglutinin-lectin as an endocytic marker, an arrest of endocytosis is observed in antisense CLC-5 treated cells. Exposure of the cell surface to calcium oxalate crystals results in crystal agglomeration in a minority of sense CLC-5 transfectants (45%) and all antisense CLC-5 transfectants. We conclude that expression of CLC-5 in mIMCD-3 cells allows acidification of endosomes and endocytosis, and that disruption of CLC-5 expression causes abnormal crystal agglomeration.


Assuntos
Cálcio/química , Canais de Cloreto/genética , Túbulos Renais Coletores , Oligonucleotídeos Antissenso/genética , Animais , Linhagem Celular , Canais de Cloreto/metabolismo , Cristalização , Endocitose , Endossomos/química , Concentração de Íons de Hidrogênio , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Camundongos , Nefrocalcinose/etiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...