Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(3): 1285-1295, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36857509

RESUMO

Micro-prosthetics requires the fabrication of mechanically robust and personalized components with sub-millimetric feature accuracy. Three-dimensional (3D) printing technologies have had a major impact on manufacturing such miniaturized devices for biomedical applications; however, biocompatibility requirements greatly constrain the choice of usable materials. Hydroxyapatite (HA) and its composites have been widely employed to fabricate bone-like structures, especially at the macroscale. In this work, we investigate the rheology, printability, and prosthetic mechanical properties of HA and HA-silk protein composites, focusing on the roles of composition and water content. We correlate key linear and nonlinear shear rheological parameters to geometric outcomes of printing and explain how silk compensates for the inherent brittleness of printed HA components. By increasing ink ductility, the inclusion of silk improves the quality of printed items through two mechanisms: (1) reducing underextrusion by lowering the required elastic modulus and, (2) reducing slumping by increasing the ink yield stress proportional to the modulus. We demonstrate that the elastic modulus and compressive strength of parts fabricated from silk-HA inks are higher than those for rheologically comparable pure-HA inks. We construct a printing map to guide the manufacturing of HA-based inks with excellent final properties, especially for use in biomedical applications for which sub-millimetric features are required.


Assuntos
Materiais Biocompatíveis , Durapatita , Durapatita/química , Seda , Módulo de Elasticidade , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA