Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37557181

RESUMO

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Histonas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
2.
Antioxidants (Basel) ; 9(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187129

RESUMO

Meat consumption plays a critical role in the development of several types of cancer. Hemin, a metabolite of myoglobin produced after meat intake, has been demonstrated to be involved in the cancer initiation phase. Macrophages are key components of the innate immunity, which, upon activation, can prevent cancer development by eliminating neoplastic cells. Metabolic reprogramming, characterized by high glycolysis and low oxidative phosphorylation, is critical for macrophage activation. 3,4-dihydroxyphenylacetic acid (3,4DHPAA) and 4-hydroxyphenylacetic acid (4HPAA), both microbiota-derived metabolites of flavonoids, have not been extensively studied although they exert antioxidant properties. The aim of this study was to determine the effect of hemin on the anticancer properties of macrophages and the role of 3,4DHPAA and 4HPAA in metabolic reprogramming and activation of macrophages leading to the elimination of cancer cells. The results showed that hemin inhibited glycolysis, glycolytic, and pentose phosphate pathway (PPP) enzyme activities and hypoxia-inducible factor-1 alpha (HIF-1α) stabilization, which interferes with macrophage activation (evidenced by decreased interferon-γ-inducible protein 10 (IP-10) release) and their ability to eliminate cancer cells (via cytotoxic mediators and phagocytosis). Hemin also reduced the mitochondrial membrane potential (MMP) and mitochondrial mass in macrophages. 3,4DHPAA and 4HPAA, by stimulating glycolysis and PPP, prevented the impairment of the macrophage anticancer activity induced by hemin. In conclusion, 3,4HPAA and 4HPAA administration could represent a promising strategy for preventing the reduction of macrophage activation induced by hemin.

3.
Molecules ; 25(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927689

RESUMO

Meat diet plays a pivotal role in colorectal cancer (CRC). Hemin, a metabolite of myoglobin, produced after meat intake, has been involved in CRC initiation. The compound, 3,4-dihydroxyphenylacetic acid (3,4HPAA) is a scarcely studied microbiota-derived metabolite of the flavonoid quercetin (QUE), which exert antioxidant properties. The aim of this study was to determine the protective effect of 3,4HPAA against malignant transformation (increased cell proliferation, decreased apoptosis, DNA oxidative damage and augmented reactive oxidative species (ROS) levels) and mitochondrial dysfunction induced by hemin in normal colon epithelial cells and colon cancer cells. The effect of 3,4HPAA was assessed in comparison to its precursor, QUE and to a known CRC protective agent, sulforaphane (SFN). The results showed that both, tumor and normal cells, exposed to hemin, presented increased cell proliferation, decreased caspase 3 activity and cytochrome c release, as well as augmented production of intracellular and mitochondrial ROS. In addition, hemin decreased the mitochondrial membrane potential (MMP) and the activity of complexes I and II of the electron transport chain. These effects of hemin were prevented by the action of 3,4HPAA. The metabolite showed to be more active than QUE and slightly less active than SFN. In conclusion, 3,4HPAA administration could represent a promising strategy for preventing malignant transformation and mitochondrial dysfunction in colon epithelia induced by hemin.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético , Antineoplásicos , Hemina , Mucosa Intestinal , Microbiota , Mitocôndrias , Quercetina , Animais , Humanos , Ácido 3,4-Di-Hidroxifenilacético/química , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Hemina/efeitos adversos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Quercetina/química , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo
4.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927797

RESUMO

Androgen receptor (AR)-mediated signaling is essential for the growth and differentiation of the normal prostate and is the primary target for androgen deprivation therapy in prostate cancer. Tat interactive protein 60 kDa (Tip60) is a histone acetyltransferase that is critical for AR activation. It is well known that cancer cells rewire their metabolic pathways in order to sustain aberrant proliferation. Growing evidence demonstrates that the AR and Tip60 modulate key metabolic processes to promote the survival of prostate cancer cells, in addition to their classical roles. AR activation enhances glucose metabolism, including glycolysis, tricarboxylic acid cycle and oxidative phosphorylation, as well as lipid metabolism in prostate cancer. The AR also interacts with other metabolic regulators, including calcium/calmodulin-dependent kinase kinase 2 and mammalian target of rapamycin. Several studies have revealed the roles of Tip60 in determining cell fate indirectly by modulating metabolic regulators, such as c-Myc, hypoxia inducible factor 1α (HIF-1α) and p53 in various cancer types. Furthermore, Tip60 has been shown to regulate the activity of key enzymes in gluconeogenesis and glycolysis directly through acetylation. Overall, both the AR and Tip60 are master metabolic regulators that mediate cellular energy metabolism in prostate cancer, providing a framework for the development of novel therapeutic targets in androgen-dependent prostate cancer.


Assuntos
Lisina Acetiltransferase 5/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Metabolismo Energético , Humanos , Masculino
5.
Epilepsia Open ; 5(2): 230-239, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32524048

RESUMO

OBJECTIVE: To investigate feasibility, safety, and tolerability of long-term (48 weeks) add-on treatment with triheptanoin (UX007), the triglyceride of heptanoate, in adults with drug-resistant epilepsy. METHODS: This extension study was offered to adult participants with drug-resistant epilepsy who completed a 12-week randomized controlled trial of add-on medium-chain triglycerides (MCT) vs triheptanoin. Participants were asked to titrate triheptanoin to their maximum tolerated dose over 3 weeks, followed by 48-week maintenance before tapering or treatment extension. The primary aims were to assess retention and safety of the triheptanoin treatment, and secondary aims to assess the tolerated doses and changes in seizure frequency. RESULTS: Eleven adults were enrolled and ten people were analyzed (because one patient was diagnosed as having nonepileptic seizures while on the study). Two adults finished the study and extended their treatment. Eight participants withdrew from the study, due to lack of efficacy (n = 3), unknown reasons (n = 2), belief of weight gain (n = 1), wanting to try a different treatment (n = 1), and a colonoscopy (n = 1). Diarrhea in two people and bloating in one person were deemed possibly related to treatment, but other adverse events were not. The duration of maintenance treatment dose was 27-513 days (median 247 days, range 27-513 days), and 0.49 -1.1 mL/kg triheptanoin was taken per day (0.77 ± 0.19 mL/kg, mean ± standard deviation, 40-100 mL/d). Two participants experienced >90% and three people >50% reduction in seizure frequency, and all had focal seizures. The median seizure reduction was 48% (average 38%). SIGNIFICANCE: Our results indicate antiseizure effects of triheptanoin on focal seizures in 5 out of 10 adults. However, only two people finished and extended the 48-week add-on treatment phase, despite lack of safety or tolerability issues.More studies focused on improved treatment formulations, the potential of lower dosages, and efficacy are needed. Trial registration number: ACTRN12615000406505.

6.
Nature ; 577(7789): 266-270, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31827282

RESUMO

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)1. Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


Assuntos
Histona Acetiltransferases/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Linhagem Celular Tumoral , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Terciária de Proteína
7.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671779

RESUMO

Androgen receptor (AR) stimulators, such as androgen and Tip60, play a pivotal role in prostatic carcinogenesis as androgen receptor signaling is critical for the growth and transformation of the prostate gland. Moreover, androgen and Tip60 promotes HIF-1α activation, involved in metabolic reprogramming by increasing glycolysis, a hallmark in cancer initiation and development. In this study we evaluated the effect of androgen and Tip60 stimulus in AR pathway activation and HIF-1α stabilization, in terms of proliferation and cell metabolism in androgen-sensitive LNCaP cells. The protective role of the bioactive compounds sulforaphane and capsaicin against the effect of these stimuli leading to pro-carcinogenic features was also addressed. Sulforaphane and capsaicin decreased nuclear AR, prostate specific antigen and Bcl-XL levels, and cell proliferation induced by androgen and Tip60 in LNCaP cells. These bioactive compounds prevented the increase in glycolysis, hexokinase and pyruvate kinase activity, and reduced HIF-1α stabilization induced by androgen and Tip60 in LNCaP cells. The protective role of sulforaphane and capsaicin on prostate cancer may rely on mechanisms involving the inhibition of Tip60, AR and HIF-1α effects.


Assuntos
Androgênios/metabolismo , Capsaicina/farmacologia , Isotiocianatos/farmacologia , Lisina Acetiltransferase 5/metabolismo , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Capsaicina/química , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isotiocianatos/química , Lisina Acetiltransferase 5/genética , Masculino , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Piruvato Quinase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos , Proteína bcl-X/metabolismo
8.
J Agric Food Chem ; 67(42): 11616-11626, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31542929

RESUMO

Avocado peel, a byproduct from the avocado pulp industry, is a promising source of polyphenolic compounds. We evaluated the effect of a proanthocyanidin-rich avocado peel polyphenol extract (AvPPE) on the composition and metabolic activity of human fecal microbiota cultured for 24 h in a bioreactor in the presence of high protein (HP) amounts and the effect of the resulting culture supernatants (CSs) on HT-29Glc-/+ and Caco-2 cells. AvPPE decreased the HP-induced production of ammonia, H2S, propionate, and isovalerate and increased that of indole and butyrate. Microbiota composition was marginally affected by HP, whileAvPPE increased the microorganisms/abundance of phylum Actinobacteria, families Coriobacteriaceae and Ruminococcaceae, and genus Faecalibacterium. AvPPE failed to prevent the HP-induced decrease of HT-29Glc-/+ cell viability and energy efficiency but prevented the HP-induced alterations of barrier function in Caco-2 cells. Additionally, the genotoxic effect of the CSs upon HT-29Glc-/+ was attenuated by AvPPE. Therefore, AvPPE may be considered as a promising product for improving colonic homeostasis.


Assuntos
Colo/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Persea/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proantocianidinas/farmacologia , Amônia/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Butiratos/metabolismo , Células CACO-2 , Colo/microbiologia , Dieta Rica em Proteínas , Fezes/microbiologia , Frutas/química , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Proantocianidinas/análise
9.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261749

RESUMO

Cancer is a problem with worldwide importance and is the second leading cause of death globally. Cancer cells reprogram their metabolism to support their uncontrolled expansion by increasing biomass (anabolic metabolism-glycolysis) at the expense of their energy (bioenergetics- mitochondrial function) requirements. In this aspect, metabolic reprogramming stands out as a key biological process in understanding the conversion of a normal cell into a neoplastic precursor. Quercetin is the major representative of the flavonoid subclass of flavonols. Quercetin is ubiquitously present in fruits and vegetables, being one of the most common dietary flavonols in the western diet. The anti-cancer effects of quercetin include its ability to promote the loss of cell viability, apoptosis and autophagy through the modulation of PI3K/Akt/mTOR, Wnt/-catenin, and MAPK/ERK1/2 pathways. In this review, we discuss the role of quercetin in cancer metabolism, addressing specifically its ability to target molecular pathways involved in glucose metabolism and mitochondrial function.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Neoplasias/metabolismo , Quercetina/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Quercetina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
10.
Food Funct ; 10(7): 4022-4035, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31218325

RESUMO

The consumption of high-protein diets (HPDs) increases the flux of undigested proteins moving to the colon. These proteins are hydrolyzed by bacterial proteases and peptidases, releasing amino acids, which in turn are metabolized by the intestinal microbiota (IM) for protein synthesis and production of various metabolites that can exert positive or deleterious effects, depending on their concentrations, at the colonic or systemic level. On the other hand, proanthocyanidins are polymers of flavan-3-ols which cannot be absorbed at the intestinal level, accumulating in the colon where they are fermented by the IM producing metabolites that appear beneficial for colonocytes and also at the peripheral level. This study evaluated the effect of an avocado peel polyphenol extract (AvPPE) rich in proanthocyanidins on the production of cecal bacterial metabolites and microbiota composition in rats fed a HPD. Compared with the normal-protein (NP) group, HPD did not markedly affect the body weight gain of the animals, but increased the kidney weight. Additionally, the HPD induced a higher cecal concentration of ammonia (NH4+/NH3), hydrogen sulfide (H2S) and branched-chain fatty acids (BCFAs). The supplementation with AvPPE attenuated the production of H2S and increased the production of indole. On the other hand, the HPD affected the composition of the cecal microbiota, increasing the relative abundance of the genera Bacteroides and Lactobacillus, while decreasing Prevotella. The AvPPE counteracted the increase induced by the HPD on the genus Lactobacillus, and increased the relative abundance of [Prevotella]. Our results contribute towards explaining the health-promoting effects of proanthocyanidin-rich dietary foodstuffs including fruits and vegetables.


Assuntos
Aminoácidos/biossíntese , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Dieta Rica em Proteínas , Microbioma Gastrointestinal/efeitos dos fármacos , Persea/química , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Amônia , Animais , Peso Corporal , Ceco/metabolismo , Ceco/microbiologia , Colo/microbiologia , Ácidos Graxos Voláteis , Fermentação , Flavonoides/química , Frutas/química , Lactobacillus , Masculino , Modelos Animais , Tamanho do Órgão , Polifenóis , Ratos , Ratos Wistar
11.
J Med Food ; 22(8): 753-770, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31084513

RESUMO

Obesity is a worldwide epidemic, which is characterized by the excess accumulation of adipose tissue and to an extent that impairs both the physical and psychosocial health and well-being. There are several weight-loss strategies available, including dietary modification, pharmacotherapy, and bariatric surgery, but many are ineffective or not a long-term solution. Bioactive compounds present in medicinal plants and plant extracts, like polyphenols, constitute the oldest and most extensive form of alternative treatments for the prevention and management of obesity. Their consumption is currently increasing in the population due to the high cost, potential adverse effects, and limited benefits of the currently available pharmaceutical drugs. A great number of studies has explored how dietary polyphenols can interfere with the different mechanisms associated with obesity development. They suggest that these compounds can decrease energy and food intake, lipogenesis, and preadipocyte differentiation and proliferation, while increasing energy expenditure, lipolysis, and fat oxidation. Both quercetin, one of the most common dietary flavonols in the western diet, and epigallocatechin gallate (EGCG), the most abundant polyphenol in green tea, exhibit antiobesity effects in adipocyte cultures and animal models. However, the extrapolation of these potential benefits to obese humans remains unclear. Although quercetin supplementation does not seem to exert any beneficial effects on body weight, this polyphenol could prevent the obesity-associated mortality by reducing cardiovascular disease risk. An important consideration for the design of further trials is the occurrence of gene polymorphisms in key enzymes involved in flavanol metabolism, which determines a subject's sensitivity to catechins and seems, therefore, crucial for the success of the antiobesity intervention. Although the evidence supporting antiobesity effects is more consistent in EGCG than with quercetin studies, they could still be beneficial by reducing the cardiovascular risk of obese subjects, rather than inducing body weight loss.


Assuntos
Catequina/análogos & derivados , Obesidade/tratamento farmacológico , Quercetina/administração & dosagem , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Catequina/administração & dosagem , Humanos , Obesidade/metabolismo , Obesidade/prevenção & controle
12.
Redox Biol ; 22: 101128, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771751

RESUMO

Chronic hypobaric hypoxia during fetal and neonatal life induces neonatal pulmonary hypertension. Hypoxia and oxidative stress are driving this condition, which implies an increase generation of reactive oxygen species (ROS) and/or decreased antioxidant capacity. Melatonin has antioxidant properties that decrease oxidative stress and improves pulmonary vascular function when administered postnatally. However, the effects of an antenatal treatment with melatonin in the neonatal pulmonary function and oxidative status are unknown. Therefore, we hypothesized that an antenatal therapy with melatonin improves the pulmonary arterial pressure and antioxidant status in high altitude pulmonary hypertensive neonates. Twelve ewes were bred at high altitude (3600 m); 6 of them were used as a control group (vehicle 1.4% ethanol) and 6 as a melatonin treated group (10 mg d-1 melatonin in vehicle). Treatments were given once daily during the last third of gestation (100-150 days). Lambs were born and raised with their mothers until 12 days old, and neonatal pulmonary arterial pressure and resistance, plasma antioxidant capacity and the lung oxidative status were determined. Furthermore, we measured the pulmonary expression and activity for the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase, and the oxidative stress markers 8-isoprostanes, 4HNE and nitrotyrosine. Finally, we assessed pulmonary pro-oxidant sources by the expression and function of NADPH oxidase, mitochondria and xanthine oxidase. Melatonin decreased the birth weight. However, melatonin enhanced the plasma antioxidant capacity and decreased the pulmonary antioxidant activity, associated with a diminished oxidative stress during postnatal life. Interestingly, melatonin also decreased ROS generation at the main pro-oxidant sources. Our findings suggest that antenatal administration of melatonin programs an enhanced antioxidant/pro-oxidant status, modulating ROS sources in the postnatal lung.


Assuntos
Antioxidantes/metabolismo , Hipertensão Pulmonar/metabolismo , Melatonina/metabolismo , Oxidantes/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores , Peso ao Nascer , Gasometria , Feminino , Regulação Enzimológica da Expressão Gênica , Glutationa/metabolismo , Testes de Função Cardíaca , Hipertensão Pulmonar/diagnóstico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Melatonina/sangue , Estresse Oxidativo , Gravidez , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testes de Função Respiratória , Ovinos
13.
Front Pharmacol ; 10: 1641, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32184718

RESUMO

Dexmedetomidine (DEX) is a highly selective α2-adrenergic agonist with sedative and analgesic properties, with minimal respiratory effects. It is used as a sedative in the intensive care unit and the operating room. The opioid-sparing effect and the absence of respiratory effects make dexmedetomidine an attractive adjuvant drug for anesthesia in obese patients who are at an increased risk for postoperative respiratory complications. The pharmacodynamic effects on the cardiovascular system are known; however the mechanisms that induce cardioprotection are still under study. Regarding the pharmacokinetics properties, this drug is extensively metabolized in the liver by the uridine diphosphate glucuronosyltransferases. It has a relatively high hepatic extraction ratio, and therefore, its metabolism is dependent on liver blood flow. This review shows, from a basic clinical approach, the evidence supporting the use of dexmedetomidine in different settings, from its use in animal models of ischemia-reperfusion, and cardioprotective signaling pathways. In addition, pharmacokinetics and pharmacodynamics studies in obese subjects and the management of patients subjected to mechanical ventilation are described. Moreover, the clinical efficacy of delirium incidence in patients with indication of non-invasive ventilation is shown. Finally, the available evidence from DEX is described by a group of Chilean pharmacologists and clinicians who have worked for more than 10 years on DEX.

14.
Neurosci Lett ; 683: 207-214, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30076987

RESUMO

Triheptanoin, the medium-chain triglyceride of heptanoate, has been shown to be anticonvulsant and neuroprotective in several neurological disorders. In the gastrointestinal tract, triheptanoin is cleaved to heptanoate, which is then taken up by the blood and most tissues, including liver, heart and brain. Here we evaluated the neuroprotective effects of heptanoate and its effects on mitochondrial oxygen consumption in vitro. We also investigated the neuroprotective effects of triheptanoin compared to long-chain triglycerides when administered after stroke onset in rats. Heptanoate pre-treatment protected cultured neurons against cell death induced by oxygen glucose deprivation and N-methyl-D-aspartate. Incubation of cultured astrocytes with heptanoate for 2 h increased mitochondrial proton leak and also enhanced basal respiration and ATP turnover, suggesting that heptanoate protects against oxidative stress and is used as fuel. However, continuous 72 h infusion of triheptanoin initiated 1 h after middle cerebral artery occlusion in rats did not alter stroke volume at 3 days or neurological deficit at 1 and 3 days relative to long-chain triglyceride control treatment.


Assuntos
Heptanoatos/uso terapêutico , Infarto da Artéria Cerebral Média/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Triglicerídeos/uso terapêutico , Animais , Células Cultivadas , Heptanoatos/metabolismo , Heptanoatos/farmacologia , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar , Resultado do Tratamento , Triglicerídeos/farmacologia
15.
Amino Acids ; 50(6): 755-763, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29700653

RESUMO

Hydrogen sulfide (H2S), a metabolic end product synthesized by the microbiota from L-cysteine, has been shown to act at low micromolar concentration as a mineral oxidative substrate in colonocytes while acting as an inhibitor of oxygen consumption at higher luminal concentrations (65 µM and above). From the previous works showing that polyphenols can bind volatile sulfur compounds, we hypothesized that different dietary proanthocyanidin-containing polyphenol (PACs) plant extracts might modulate the inhibitory effect of H2S on colonocyte respiration. Using the model of human HT-29 Glc-/+ cell colonocytes, we show here that pre-incubation of 65 µM of the H2S donor NaHS with the different polyphenol extracts markedly reduced the inhibitory effect of NaHS on colonocyte oxygen consumption. Our studies on HT-29 Glc-/+ cell respiration performed in the absence or the presence of PACs reveal rapid binding of H2S with the sulfide-oxidizing unit and slower binding of H2S to the cytochrome c oxidase (complex IV of the respiratory chain). Despite acute inhibition of colonocyte respiration, no measurable effect of NaHS on paracellular permeability was recorded after 24 h treatment using the Caco-2 colonocyte monolayer model. The results are discussed in the context of the binding of excessive bacterial metabolites by unabsorbed dietary compounds and of the capacity of colonocytes to adapt to changing luminal environment.


Assuntos
Colo/metabolismo , Frutas/química , Sulfeto de Hidrogênio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proantocianidinas/farmacologia , Linhagem Celular Tumoral , Colo/citologia , Humanos , Extratos Vegetais/química , Proantocianidinas/química
16.
Oxid Med Cell Longev ; 2018: 7239123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576853

RESUMO

Alterations in cardiac energy metabolism play a key role in the pathogenesis of diabetic cardiomyopathy. Hypercholesterolemia associated with bioenergetic impairment and oxidative stress has not been well characterized in the cardiac function under glycemic control deficiency conditions. This work aimed to determine the cardioprotective effects of quercetin (QUE) against the damage induced by a high-cholesterol (HC) diet in hyperglycemic rats, addressing intracellular antioxidant mechanisms and bioenergetics. Quercetin reduced HC-induced alterations in the lipid profile and glycemia in rats. In addition, QUE attenuated cardiac diastolic dysfunction (increased E:A ratio), prevented cardiac cholesterol accumulation, and reduced the increase in HC-induced myocyte density. Moreover, QUE reduced HC-induced oxidative stress by preventing the decrease in GSH/GSSG ratio, Nrf2 nuclear translocation, HO-1 expression, and antioxidant enzymatic activity. Quercetin also counteracted HC-induced bioenergetic impairment, preventing a reduction in ATP levels and alterations in PGC-1α, UCP2, and PPARγ expression. In conclusion, the mechanisms that support the cardioprotective effect of QUE in rats with HC might be mediated by the upregulation of antioxidant mechanisms and improved bioenergetics on the heart. Targeting bioenergetics with QUE can be used as a pharmacological approach to modulate structural and functional changes of the heart under hypercholesterolemic and hyperglycemic conditions.


Assuntos
Dieta/efeitos adversos , Sopros Cardíacos/prevenção & controle , Hipercolesterolemia/tratamento farmacológico , Quercetina/farmacologia , Animais , Colesterol/administração & dosagem , Metabolismo Energético , Sopros Cardíacos/tratamento farmacológico , Sopros Cardíacos/etiologia , Hipercolesterolemia/patologia , Hiperglicemia/etiologia , Hiperglicemia/fisiopatologia , Masculino , Estresse Oxidativo , Distribuição Aleatória , Ratos , Ratos Wistar
17.
Int J Mol Sci ; 19(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373484

RESUMO

More than 140 million people live and works (in a chronic or intermittent form) above 2500 m worldwide and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 55,000 persons work in high altitude shifts, where stays at lowlands and interspersed with working stays at highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders, due to an increase in free radical formation and a decrease in antioxidant capacity. However, in animal models, intermittent hypoxia (IH) induce preconditioning, like responses and cardioprotection. Here, we aimed to describe in a rat model the responses on cardiac and vascular function to 4 cycles of intermittent hypobaric hypoxia (IHH). Twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH, and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days hypoxia + 4 days normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the first and fourth cycle, cardiac structural, and functional variables were determined by echocardiography. Thereafter, ex vivo vascular function and biomechanical properties were determined in femoral arteries by wire myography. We further measured cardiac oxidative stress biomarkers (4-Hydroxy-nonenal, HNE; nytrotirosine, NT), reactive oxygen species (ROS) sources (NADPH and mitochondrial), and antioxidant enzymes activity (catalase, CAT; glutathione peroxidase, GPx, and superoxide dismutase, SOD). Our results show a higher ejection and shortening fraction of the left ventricle function by the end of the 4th cycle. Further, femoral vessels showed an improvement of vasodilator capacity and diminished stiffening. Cardiac tissue presented a higher expression of antioxidant enzymes and mitochondrial ROS formation in IHH, as compared with normobaric hypoxic controls. IHH exposure determines a preconditioning effect on the heart and femoral artery, both at structural and functional levels, associated with the induction of antioxidant defence mechanisms. However, mitochondrial ROS generation was increased in cardiac tissue. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.


Assuntos
Hipóxia/fisiopatologia , Estresse Oxidativo , Vasodilatação , Função Ventricular Esquerda , Adaptação Fisiológica , Animais , Hipóxia/metabolismo , Masculino , Mitocôndrias Musculares/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Wistar
18.
J Neurochem ; 144(4): 431-442, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29222946

RESUMO

Triheptanoin, the triglyceride of heptanoate, is anaplerotic (refills deficient tricarboxylic acid cycle intermediates) via the propionyl-CoA carboxylase pathway. It has been shown to be neuroprotective and anticonvulsant in several models of neurological disorders. Here, we investigated the effects of triheptanoin against changes of hippocampal mitochondrial functions, oxidative stress and cell death induced by pilocarpine-induced status epilepticus (SE) in mice. Ten days of triheptanoin pre-treatment did not protect against SE, but it preserved hippocampal mitochondrial functions including state 2, state 3 ADP, state 3 uncoupled respiration, respiration linked to ATP synthesis along with the activities of pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex 24 h post-SE. Triheptanoin prevented the SE-induced reductions of hippocampal mitochondrial superoxide dismutase activity and plasma antioxidant status as well as lipid peroxidation. It also reduced neuronal degeneration in hippocampal CA1 and CA3 regions 3 days after SE. In addition, heptanoate significantly reduced hydrogen peroxide-induced cell death in cultured neurons. In situ hybridization localized the enzymes of the propionyl-CoA carboxylase pathway, specifically Pccα, Pccß and methylmalonyl-CoA mutase to adult mouse hippocampal pyramidal neurons and dentate granule cells, indicating that anaplerosis may occur in neurons. In conclusion, triheptanoin appears to have anaplerotic and antioxidant effects which contribute to its neuroprotective properties.


Assuntos
Anticonvulsivantes/uso terapêutico , Hipocampo/metabolismo , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/prevenção & controle , Degeneração Neural/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Triglicerídeos/uso terapêutico , Animais , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Convulsivantes , Masculino , Camundongos , Pilocarpina , Estado Epiléptico/induzido quimicamente
19.
J Agric Food Chem ; 65(50): 11002-11010, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29179550

RESUMO

Quercetin oxidation is generally believed to ultimately result in the loss of its antioxidant properties. To test this assertion, quercetin oxidation was induced, and after each of its major metabolites was identified and isolated by HPLC-DAD-ESI-MS/MS, the antioxidant (dichlorodihydrofluorescein oxidation-inhibiting) and cytoprotective (LDH leakage-preventing) properties were evaluated in Hs68 and Caco2 cells exposed to indomethacin. Compared to quercetin, the whole mixture of metabolites (QOX) displayed a 20-fold greater potency. After resolution of QOX into 12 major peaks, only one (peak 8), identified as 2,5,7,3',4'-pentahydroxy-3,4-flavandione or its 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone tautomer, could account for the antioxidant and cytoprotective effects afforded QOX. Peak 8 exerted such effects at a 50 nM concentration, revealing a potency 200-fold higher than that of quercetin. The effects of peak 8 were seen regardless of whether it was added to the cells 40 min before or simultaneously with the oxygen-reactive species-generating agent, suggesting an intracellular ability to trigger early antioxidant responses. Thus, the present study is the first to reveal that in regard to the intracellular actions of quercetin, attention should be extended toward some of its oxidation products.


Assuntos
Antioxidantes/química , Substâncias Protetoras/química , Quercetina/química , Antioxidantes/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Oxirredução , Substâncias Protetoras/farmacologia , Quercetina/farmacologia , Espectrometria de Massas em Tandem
20.
Oxid Med Cell Longev ; 2017: 3839756, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28386307

RESUMO

Cholesterol plays an important role in inducing pancreatic ß-cell dysfunction, leading to an impaired insulin secretory response to glucose. This study aimed to determine the protective effects of sulforaphane, a natural isothiocyanate Nrf2-inducer, against cholesterol-induced pancreatic ß-cells dysfunction, through molecular and cellular mechanisms involving mitochondrial bioenergetics. Sulforaphane prevented cholesterol-induced alterations in the coupling efficiency of mitochondrial respiration, improving ATP turnover and spare capacity, and averted the impairment of the electron flow at complexes I, II, and IV. Sulforaphane also attenuated the cholesterol-induced activation of the NFκB pathway, normalizing the expression of pro- and anti-inflammatory cytokines. In addition, it also inhibited the decrease in sirtuin 1 expression and greatly increased Pgc-1α expression in Min6 cells. Sulforaphane increased the expression of antioxidant enzymes downstream of the Nrf2 pathway and prevented lipid peroxidation induced by cholesterol. The antioxidant and anti-inflammatory properties of sulforaphane and its ability to protect and improve mitochondrial bioenergetic function contribute to its protective action against cholesterol-induced pancreatic ß-cell dysfunction. Our data provide a scientifically tested foundation upon which sulforaphane can be developed as nutraceutical to preserve ß-cell function and eventually control hyperglycemia.


Assuntos
Colesterol/toxicidade , Metabolismo Energético/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Isotiocianatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Células Cultivadas , Suplementos Nutricionais , Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Inflamação , Células Secretoras de Insulina/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...