Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194906, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690178

RESUMO

Genome-wide association studies (GWAS) have mapped over 90 % of disease- or trait-associated variants within the non-coding genome, like cis-regulatory elements (CREs). Non-coding single nucleotide polymorphisms (SNPs) are genomic variants that can change how DNA-binding regulatory proteins, like transcription factors (TFs), interact with the genome and regulate gene expression. NKX2-5 is a TF essential for proper heart development, and mutations affecting its function have been associated with congenital heart diseases (CHDs). However, establishing a causal mechanism between non-coding genomic variants and human disease remains challenging. To address this challenge, we identified 8475 SNPs predicted to alter NKX2-5 DNA-binding using a position weight matrix (PWM)-based predictive model. Five variants were prioritized for in vitro validation; four of them are associated with traits and diseases that impact cardiovascular health. The impact of these variants on NKX2-5 binding was evaluated with electrophoretic mobility shift assay (EMSA) using purified recombinant NKX2-5 homeodomain. Binding curves were constructed to determine changes in binding between variant and reference alleles. Variants rs7350789, rs7719885, rs747334, and rs3892630 increased binding affinity, whereas rs61216514 decreased binding by NKX2-5 when compared to the reference genome. Our findings suggest that differential TF-DNA binding affinity can be key in establishing a causal mechanism of pathogenic variants.


Assuntos
Estudo de Associação Genômica Ampla , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sequências Reguladoras de Ácido Nucleico , DNA/genética , Proteína Homeobox Nkx-2.5/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...