Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
2.
Exp Neurol ; 342: 113758, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33991525

RESUMO

To get insight into the mechanism of action of carbonic anhydrase inhibitors (CAI) in neuromuscular disorders, we investigated effects of dichlorphenamide (DCP) and acetazolamide (ACTZ) on ClC-1 chloride channels and skeletal muscle excitability. We performed patch-clamp experiments to test drugs on chloride currents in HEK293T cells transfected with hClC-1. Using the two-intracellular microelectrode technique in current-clamp mode, we measured the effects of drugs on the resting chloride conductance and action potential properties of sarcolemma in rat and mouse skeletal muscle fibers. Using BCECF dye fluorometry, we measured the effects of ACTZ on intracellular pH in single rat muscle fibers. Similarly to ACTZ, DCP (100 µM) increased hClC-1 chloride currents in HEK cells, because of the negative shift of the open probability voltage dependence and the slowing of deactivation kinetics. Bendroflumethiazide (BFT, 100 µM), structurally related to DCP but lacking activity on carbonic anhydrase, had little effects on chloride currents. In isolated rat muscle fibers, 50-100 µM of ACTZ or DCP, but not BFT, induced a ~ 20% increase of the resting chloride conductance. ACTZ reduced action potential firing in mouse muscle fibers. ACTZ (100 µM) reduced intracellular pH to 6.8 in rat muscle fibers. These results suggest that carbonic anhydrase inhibitors can reduce muscle excitability by increasing ClC-1 channel activity, probably through intracellular acidification. Such a mechanism may contribute in part to the clinical effects of these drugs in myotonia and other muscle excitability disorders.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Canais de Cloreto/metabolismo , Doenças Musculares/metabolismo , Sarcolema/metabolismo , Animais , Inibidores da Anidrase Carbônica/uso terapêutico , Diclorofenamida/farmacologia , Diclorofenamida/uso terapêutico , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Doenças Musculares/tratamento farmacológico , Ratos , Ratos Wistar , Sarcolema/efeitos dos fármacos
3.
Cancers (Basel) ; 13(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562306

RESUMO

Ovarian cancer (OC) is the deadliest gynecologic cancer, due to late diagnosis, development of platinum resistance, and inadequate alternative therapy. It has been demonstrated that membrane ion channels play important roles in cancer processes, including cell proliferation, apoptosis, motility, and invasion. Here, we review the contribution of ion channels in the development and progression of OC, evaluating their potential in clinical management. Increased expression of voltage-gated and epithelial sodium channels has been detected in OC cells and tissues and shown to be involved in cancer proliferation and invasion. Potassium and calcium channels have been found to play a critical role in the control of cell cycle and in the resistance to apoptosis, promoting tumor growth and recurrence. Overexpression of chloride and transient receptor potential channels was found both in vitro and in vivo, supporting their contribution to OC. Furthermore, ion channels have been shown to influence the sensitivity of OC cells to neoplastic drugs, suggesting a critical role in chemotherapy resistance. The study of ion channels expression and function in OC can improve our understanding of pathophysiology and pave the way for identifying ion channels as potential targets for tumor diagnosis and treatment.

4.
Front Neurol ; 11: 1019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013670

RESUMO

Objective: Myotonia congenita (MC) is a rare muscle disease characterized by sarcolemma over-excitability inducing skeletal muscle stiffness. It can be inherited either as an autosomal dominant (Thomsen's disease) or an autosomal recessive (Becker's disease) trait. Both types are caused by loss-of-function mutations in the CLCN1 gene, encoding for ClC-1 chloride channel. We found a ClC-1 mutation, p.G411C, identified in Russian patients who suffered from a severe form of Becker's disease. The purpose of this study was to provide a solid correlation between G411C dysfunction and clinical symptoms in the affected patient. Methods: We provide clinical and genetic information of the proband kindred. Functional studies include patch-clamp electrophysiology, biotinylation assay, western blot analysis, and confocal imaging of G411C and wild-type ClC-1 channels expressed in HEK293T cells. Results: The G411C mutation dramatically abolished chloride currents in transfected HEK cells. Biochemical experiments revealed that the majority of G411C mutant channels did not reach the plasma membrane but remained trapped in the cytoplasm. Treatment with the proteasome inhibitor MG132 reduced the degradation rate of G411C mutant channels, leading to their expression at the plasma membrane. However, despite an increase in cell surface expression, no significant chloride current was recorded in the G411C-transfected cell treated with MG132, suggesting that this mutation produces non-functional ClC-1 chloride channels. Conclusion: These results suggest that the molecular pathophysiology of G411C is linked to a reduced plasma membrane expression and biophysical dysfunction of mutant channels, likely due to a misfolding defect. Chloride current abolition confirms that the mutation is responsible for the clinical phenotype.

5.
Exp Neurol ; 328: 113287, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32205118

RESUMO

The antiarrhythmic sodium-channel blocker mexiletine is used to treat patients with myotonia. However, around 30% of patients do not benefit from mexiletine due to poor tolerability or suboptimal response. Safinamide is an add-on therapy to levodopa for Parkinson's disease. In addition to MAOB inhibition, safinamide inhibits neuronal sodium channels, conferring anticonvulsant activity in models of epilepsy. Here, we investigated the effects of safinamide on skeletal muscle hNav1.4 sodium channels and in models of myotonia, in-vitro and in-vivo. Using patch-clamp, we showed that safinamide reversibly inhibited sodium currents in HEK293T cells transfected with hNav1.4. At the holding potential (hp) of -120 mV, the half-maximum inhibitory concentrations (IC50) were 160 and 33 µM at stimulation frequencies of 0.1 and 10 Hz, respectively. The calculated affinity constants of safinamide were dependent on channel state: 420 µM for closed channels and 9 µM for fast-inactivated channels. The p.F1586C mutation in hNav1.4 greatly impaired safinamide inhibition, suggesting that the drug binds to the local anesthetic receptor site in the channel pore. In a condition mimicking myotonia, i.e. hp. of -90 mV and 50-Hz stimulation, safinamide inhibited INa with an IC50 of 6 µM, being two-fold more potent than mexiletine. Using the two-intracellular microelectrodes current-clamp method, action potential firing was recorded in vitro in rat skeletal muscle fibers in presence of the chloride channel blocker, 9-anthracene carboxylic acid (9-AC), to increase excitability. Safinamide counteracted muscle fiber hyperexcitability with an IC50 of 13 µM. In vivo, oral safinamide was tested in the rat model of myotonia. In this model, intraperitoneal injection of 9-AC greatly increased the time of righting reflex (TRR) due to development of muscle stiffness. Safinamide counteracted 9-AC induced TRR increase with an ED50 of 1.2 mg/kg, which is 7 times lower than that previously determined for mexiletine. In conclusion, safinamide is a potent voltage and frequency dependent blocker of skeletal muscle sodium channels. Accordingly, the drug was able to counteract abnormal muscle hyperexcitability induced by 9-AC, both in vitro and in vivo. Thus, this study suggests that safinamide may have potential in treating myotonia and warrants further preclinical and human studies to fully evaluate this possibility.


Assuntos
Alanina/análogos & derivados , Benzilaminas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Miotonia , Canal de Sódio Disparado por Voltagem NAV1.4/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Alanina/farmacologia , Animais , Células HEK293 , Humanos , Masculino , Ratos , Ratos Wistar
6.
Front Physiol ; 10: 1437, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827442

RESUMO

Oxytocin (Oxt), osteocalcin (Ost), and NGF/BDNF have a role in bone homeostasis, reproduction, and cognition. Oxt/Ost is required for muscle repair. We investigated gene response of muscle and the inter-organ communication following cold stress (CS). The mRNA quantity of Ngf, Ost, Oxt, Bdnf, p75ntr, Ntrk1, Gprc6a, Oxtr, Ntrk2, UCP1, and Il-6 genes in bone, brain, soleus (SOL), and tibialis anterior (TA) muscles from adult mice following CS were investigated. The myosin heavy-chain Mhc2b, Mhc1, Mhc2x, and Mhc2a gene expression were investigated. Mice were maintained at T = 23°C or 4°C for 6 h and 5-days (5d). CS mice did not show signs of muscle degeneration. An upregulation of Ucp1 and Ngf genes by 2 and 1.5 folds, respectively, in TA after 6 h CS and Ntrk1 by 4 and 22 folds in SOL muscle after 6 h and 5d CS, respectively, was observed; while after 6 h CS p75Ntr was downregulated in either muscle. Bdnf was unaffected, while after 5d CS Ntrk2 was upregulated in TA. Ost was downregulated in SOL by 0.9-folds at 5d. Following 5d CS, Oxtr and Il-6 genes were upregulated, respectively, by 1 and 1.5 folds in SOL. A downregulation of Mhc2b, respectively, by 0.96 and 0.88-folds after 6 h and 5d CS in SOL and Mhc2a was also downregulated by 0.88-fold after 5d CS in TA. Mhc1 and Mhc2x were not affected. Changes in the expression levels of genes in TA and SOL muscles, bone, and brain following CS were regulated by IL6 and Oxt. CS potentiates the slow-twitch phenotype of SOL which is in line with the metabolic need of this muscle, and the potentiation of the slow-twitch phenotype in TA. Oxt and IL6 coordinate a phenotype-dependent tonic effect of slow-twitch muscle and Oxt regulates the inter-organ interaction between brain and SOL muscle. Muscle tropism is maintained by NGF signaling following CS.

7.
Pharmacol Res ; 141: 224-235, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30611854

RESUMO

Sodium channel myotonia and paramyotonia congenita are caused by gain-of-function mutations in the skeletal muscle voltage-gated sodium channel hNav1.4. The first-line drug is the sodium channel blocker mexiletine; however, some patients show side effects or limited responses. We previously showed that two hNav1.4 mutations, p.G1306E and p.P1158L, reduce mexiletine potency in vitro, whereas another sodium channel blocker, flecainide, is less sensitive to mutation-induced gating defects. This observation was successfully translated to p.G1306E and p.P1158L carriers. Thus, the aim of this study was to perform a pharmacological characterization of myotonic Nav1.4 mutations clustered near the fast inactivation gate of the channel. We chose seven mutations (p.V1293I, p.N1297S, p.N1297K, p.F1298C, p.G1306E, p.I1310N, and p.T1313M) from the database of Italian and French networks for muscle channelopathies. Recombinant hNav1.4 mutants were expressed in HEK293T cells for functional and pharmacological characterization using the patch-clamp technique. All the studied mutations impair the kinetics and/or voltage dependence of fast inactivation, which is likely the main mechanism responsible for myotonia. The severity of myotonia is well-correlated to the enhancement of window currents generated by the intersection of the activation and fast inactivation voltage dependence. Five of the six mutants displaying a significant positive shift of fast inactivation voltage dependence reduced mexiletine inhibition in an experimental condition mimicking myotonia. In contrast, none of the mutations impairs flecainide block nor does p.T1313M impair propafenone block, indicating that class Ic antiarrhythmics may constitute a valuable alternative. Our study suggests that mutation-driven therapy would be beneficial to myotonic patients, greatly improving their quality of life.


Assuntos
Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Recém-Nascido , Ativação do Canal Iônico , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos Miotônicos/tratamento farmacológico , Adulto Jovem
8.
Hum Mutat ; 39(9): 1273-1283, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935101

RESUMO

Myotonia congenita (MC) is a skeletal-muscle hyperexcitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30 mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severities and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in the CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide subdomains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues, and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function, and provides information to develop new antimyotonic drugs.


Assuntos
Canais de Cloreto/genética , Análise Mutacional de DNA , Mutação/genética , Miotonia Congênita/genética , Adolescente , Adulto , Aminoácidos/genética , Feminino , Humanos , Ativação do Canal Iônico/genética , Masculino , Pessoa de Meia-Idade , Miotonia Congênita/tratamento farmacológico , Miotonia Congênita/fisiopatologia , Técnicas de Patch-Clamp , Peptídeos/genética , Domínios Proteicos/genética
9.
Clin Case Rep ; 5(8): 1309-1311, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28781847

RESUMO

Patients with common variable immunodeficiency are prone to infections, and this poses a particular challenge during pregnancy, when the requirement for immunoglobulin (Ig) replacement therapy is even more demanding so as to achieve an effective protection also of the fetus. This case report highlights the benefits observed with subcutaneous IgG self-administration in the management of common variable immunodeficiency (CVID) during pregnancy, in terms of efficacy and safety.

10.
Neuropharmacology ; 113(Pt A): 206-216, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27743929

RESUMO

Although the sodium channel blocker, mexiletine, is the first choice drug in myotonia, some myotonic patients remain unsatisfied due to contraindications, lack of tolerability, or incomplete response. More therapeutic options are thus needed for myotonic patients, which require clinical trials based on solid preclinical data. In previous structure-activity relationship studies, we identified two newly-synthesized derivatives of tocainide, To040 and To042, with greatly enhanced potency and use-dependent behavior in inhibiting sodium currents in frog skeletal muscle fibers. The current study was performed to verify their potential as antimyotonic agents. Patch-clamp experiments show that both compounds, especially To042, are greatly more potent and use-dependent blockers of human skeletal muscle hNav1.4 channels compared to tocainide and mexiletine. Reduced effects on F1586C hNav1.4 mutant suggest that the compounds bind to the local anesthetic receptor, but that the increased hindrance and lipophilia of the N-substituent may further strengthen drug-receptor interaction and use-dependence. Compared to mexiletine, To042 was 120 times more potent to block hNav1.4 channels in a myotonia-like cellular condition and 100 times more potent to improve muscle stiffness in vivo in a previously-validated rat model of myotonia. To explore toxicological profile, To042 was tested on hERG potassium currents, motor coordination using rotarod, and C2C12 cell line for cytotoxicity. All these experiments suggest a satisfactory therapeutic index for To042. This study shows that, owing to a huge use-dependent block of sodium channels, To042 is a promising candidate drug for myotonia and possibly other membrane excitability disorders, warranting further preclinical and human studies.


Assuntos
Miotonia/prevenção & controle , Canal de Sódio Disparado por Voltagem NAV1.4/fisiologia , Tocainide/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/fisiologia , Humanos , Masculino , Mexiletina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Miotonia/fisiopatologia , Ratos , Ratos Wistar , Reflexo de Endireitamento/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Tocainide/efeitos adversos , Tocainide/análogos & derivados , Tocainide/uso terapêutico , Bloqueadores do Canal de Sódio Disparado por Voltagem/efeitos adversos , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
11.
Curr Med Chem ; 23(38): 4286-4296, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27758717

RESUMO

BACKGROUND: The serine-threonine protein phosphatase 2A (PP2A) regulates multiple cell signaling cascades and its inactivation by viral oncoproteins, mutation of specific structural subunits or upregulation of the cellular endogenous inhibitors may contribute to malignant transformation by regulating specific phosphorylation events. Pharmacological modulation of PP2A activity is becoming an attractive strategy for cancer treatment. Some compounds targeting PP2A are able to induce PP2A reactivation and subsequent cell death in several types of cancer. METHODS: We undertook a search of bibliographic databases for peer-reviewed articles focusing on the main item of the review. We selected articles published in indexed journals. The quality of retrieved papers was appraised using the standard bibliometric indicators. RESULTS: One hundred and fourteen papers were included in the review. Twenty-seven papers gave an overview of structure and physiological role of PP2A. Twenty-five papers outlined the role of PP2A in tumor suppression. Forty papers analyzed the mechanism involved in PP2A reactivation by synthetic compounds, and twenty-two papers outlined the capability of natural compounds of restoring PP2A activity and how this could be beneficial. CONCLUSION: Findings analyzed in this review underline the central role of PP2A as a regulator of cell growth and survival, hence its function as tumor suppressor. The discovery that some compounds, either synthetic or natural, are capable of reactivating PP2A opens up new perspectives for future strategies to fully exploit therapeutic potential in human cancer. Thus, this review could also be of particular interest to pharmaceutical or biotechnology companies for drug design and targeted delivery.


Assuntos
Proteína Fosfatase 2/metabolismo , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Bortezomib/química , Bortezomib/uso terapêutico , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/uso terapêutico , Humanos , Imunossupressores/química , Imunossupressores/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/química , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
J Pharmacol Exp Ther ; 356(2): 305-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26578266

RESUMO

The antithrombin activity of unfractionated heparin (UFH) is offset by extracellular histones, which, along with DNA, represent a novel mediator of thrombosis and a structural component of thrombi. Here, we systematically evaluated the effect of histones, DNA, and histone-DNA complexes on the anticoagulant and profibrinolytic activities of UFH, its derivatives enoxaparin and fondaparinux, and the direct thrombin inhibitor dabigatran. Thrombin generation was assessed by calibrated automated thrombinography, inhibition of factor Xa and thrombin by synthetic substrates, tissue plasminogen activator-mediated clot lysis by turbidimetry, and thrombin-activatable fibrinolysis inhibitor (TAFI) activation by a functional assay. Histones alone delayed coagulation and slightly stimulated fibrinolysis. The anticoagulant activity of UFH and enoxaparin was markedly inhibited by histones, whereas that of fondaparinux was enhanced. Histones neutralized both the anti-Xa and anti-IIa activities of UFH and preferentially blocked the anti-IIa activity of enoxaparin. The anti-Xa activity of fondaparinux was not influenced by histones when analyzed by chromogenic substrates, but was potentiated in a plasma prothrombinase assay. Histones inhibited the profibrinolytic activity of UFH and enoxaparin and enhanced that of fondaparinux by acting on the modulation of TAFI activation by anticoagulants. Histone H1 was mainly responsible for these effects. Histone-DNA complexes, as well as intact neutrophil extracellular traps, impaired the activities of UFH, enoxaparin, and fondaparinux. Dabigatran was not noticeably affected by histones and/or DNA, whatever the assay performed. In conclusion, histones and DNA present in the forming clot may variably influence the antithrombotic activities of anticoagulants, suggesting a potential therapeutic advantage of dabigatran and fondaparinux over heparins.


Assuntos
Anticoagulantes/metabolismo , Dabigatrana/metabolismo , Fibrinolíticos/metabolismo , Heparina/metabolismo , Histonas/metabolismo , Animais , Anticoagulantes/farmacologia , Bothrops , Bovinos , Dabigatrana/farmacologia , Relação Dose-Resposta a Droga , Fator Xa/metabolismo , Feminino , Fibrinolíticos/farmacologia , Heparina/farmacologia , Histonas/farmacologia , Humanos , Masculino , Trombina/antagonistas & inibidores , Trombina/metabolismo
13.
PLoS One ; 9(2): e88542, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24520397

RESUMO

INTRODUCTION: The angiotensin (Ang) and bradykinin (BK) tissue-system plays a pivotal role in post-conditioning, but the efficacy of angiotensin type 1 receptor (AT1R) blockers (ARBs) in post-ischemic strategies is still under investigation. We evaluated functional and morphological outcomes, together with activation of cytosolic RISK pathway kinases, in rat hearts subjected to losartan (LOS) or irbesartan (IRB) post-ischemic administration. METHODS: Isolated rat hearts underwent 30 min ischemia and 120 min reperfusion. Post-conditioning was obtained by intermittent (10 s/each) or continuous drug infusion during the first 3 min of reperfusion. Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (dLVP), coronary flow (CF), and left ventricular infarct mass (IM) were measured together with the activation status of RISK kinases Akt, p42/44 MAPK and GSK3ß. RESULTS: When compared to hearts subjected to ischemia/reperfusion (iI/R) alone, continuous IRB or LOS administration did not significantly reduce total infarct mass (cIRB or cLOS vs. iI/R, p = 0.2). Similarly, intermittent IRB (iIRB) was not able to enhance cardioprotection. Conversely, intermittent LOS administration (iLOS) significantly ameliorated cardiac recovery (iLOS vs iI/R, p<0.01). Differences between iLOS and iIRB persisted under continuous blockade of AT2R (iLOS+cPD vs. iIRB+cPD, p<0.05). Interestingly, iLOS cardioprotection was lost when BK2R was simultaneously blocked (iLOS+cHOE vs. iI/R, p = 0.6), whereas concurrent administration of iBK and iIRB replicated iLOS effects (iIRB+iBK vs. iLOS, p = 0.7). At the molecular level, iIRB treatment did not significantly activate RISK kinases, whereas both iLOS and iBK treatments were associated with activation of the Akt/GSK3ß branch of the RISK pathways (p<0.05 vs. iI/R, for both). CONCLUSIONS: Our results suggest that intermittent losartan is effective in mediating post-conditioning cardioprotection, whereas irbesartan is not. The infarct mass reduction by intermittent losartan seem mainly related on its specific ability to modulate BK2R, and only modestly associated on AT1R blocking properties.


Assuntos
Coração/efeitos dos fármacos , Pós-Condicionamento Isquêmico , Losartan/administração & dosagem , Losartan/farmacologia , Receptor B2 da Bradicinina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Animais , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Bradicinina/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Coração/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Técnicas In Vitro , Irbesartana , Losartan/uso terapêutico , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 2 de Angiotensina/metabolismo , Sístole/efeitos dos fármacos , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico
14.
PLoS One ; 9(1): e86627, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489752

RESUMO

Failure of intestinal anastomosis is a major complication following abdominal surgery. Biological materials have been introduced as reinforcement of abdominal wall hernia in contaminated setting. An innovative application of biological patch is its use as reinforcement of gastrointestinal anastomosis. The aim of study was to verify whether the bovine pericardium patch improves the healing of anastomosis, when in vivo wrapping the suture line of pig intestinal anastomosis, avoiding leakage in the event of deliberately incomplete suture. Forty-three pigs were randomly divided: Group 1 (control, n = 14): hand-sewn ileo-ileal and colo-colic anastomosis; Group 2 (n = 14): standard anastomosis wrapped by pericardium bovine patch; Group 3 (n = 1) and 4 (n = 14): one suture was deliberately incomplete and also wrapped by patch in the last one. Intraoperative evaluation, histological, biochemical, tensiometric and electrophysiological studies of intestinal specimens were performed at 48 h, 7 and 90 days after. In groups 2 and 4, no leak, stenosis, abscess, peritonitis, mesh displacement or shrinkage were found and adhesion rate decreased compared to control. Biochemical studies showed mitochondrial function improvement in colic wrapped anastomosis. Tensiometric evaluations suggested that the patch preserves the colic contractility similar to the controls. Electrophysiological results demonstrated that the patch also improves the mucosal function restoring almost normal transport properties. Use of pericardium bovine patch as reinforcement of intestinal anastomosis is safe and effective, significantly improving the healing process. Data of prevention of acute peritonitis and leakage in cases of iatrogenic perforation of anastomoses, covered with patch, is unpublished.


Assuntos
Anastomose Cirúrgica/métodos , Colo/cirurgia , Íleo/cirurgia , Pericárdio/transplante , Peritonite/prevenção & controle , Retalhos Cirúrgicos/transplante , Animais , Bovinos , Feminino , Peristaltismo/fisiologia , Recuperação de Função Fisiológica/fisiologia , Telas Cirúrgicas , Suturas , Suínos , Transplante Heterólogo , Cicatrização
15.
World J Gastroenterol ; 19(20): 3007-17, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23716980

RESUMO

AIM: To investigate the effectiveness of antioxidant compounds in modulating mitochondrial oxidative alterations and lipids accumulation in fatty hepatocytes. METHODS: Silybin-phospholipid complex containing vitamin E (Realsil(®)) was daily administered by gavage (one pouch diluted in 3 mL of water and containing 15 mg vitamin E and 47 mg silybin complexed with phospholipids) to rats fed a choline-deprived (CD) or a high fat diet [20% fat, containing 71% total calories as fat, 11% as carbohydrate, and 18% as protein, high fat diet (HFD)] for 30 d and 60 d, respectively. The control group was fed a normal semi-purified diet containing adequate levels of choline (35% total calories as fat, 47% as carbohydrate, and 18% as protein). Circulating and hepatic redox active and nitrogen regulating molecules (thioredoxin, glutathione, glutathione peroxidase), NO metabolites (nitrosothiols, nitrotyrosine), lipid peroxides [malondialdehyde-thiobarbituric (MDA-TBA)], and pro-inflammatory keratins (K-18) were measured on days 0, 7, 14, 30, and 60. Mitochondrial respiratory chain proteins and the extent of hepatic fatty infiltration were evaluated. RESULTS: Both diet regimens produced liver steatosis (50% and 25% of liver slices with CD and HFD, respectively) with no signs of necro-inflammation: fat infiltration ranged from large droplets at day 14 to disseminated and confluent vacuoles resulting in microvesicular steatosis at day 30 (CD) and day 60 (HFD). In plasma, thioredoxin and nitrosothiols were not significantly changed, while MDA-TBA, nitrotyrosine (from 6 ± 1 nmol/L to 14 ± 3 nmol/L day 30 CD, P < 0.001, and 12 ± 2 nmol/L day 60 HFD, P < 0.001), and K-18 (from 198 ± 20 to 289 ± 21 U/L day 30 CD, P < 0.001, and 242 ± 23 U/L day 60 HFD, P < 0.001) levels increased significantly with ongoing steatosis. In the liver, glutathione was decreased (from 34.0 ± 1.3 to 25.3 ± 1.2 nmol/mg prot day 30 CD, P < 0.001, and 22.4 ± 2.4 nmol/mg prot day 60 HFD, P < 0.001), while thioredoxin and glutathione peroxidase were initially increased and then decreased. Nitrosothiols were constantly increased. MDA-TBA levels were five-fold increased from 9.1 ± 1.2 nmol/g to 75.6 ± 5.4 nmol/g on day 30, P < 0.001 (CD) and doubled with HFD on day 60. Realsil administration significantly lowered the extent of fat infiltration, maintained liver glutathione levels during the first half period, and halved its decrease during the second half. Also, Realsil modulated thioredoxin changes and the production of NO derivatives and significantly lowered MDA-TBA levels both in liver (from 73.6 ± 5.4 to 57.2 ± 6.3 nmol/g day 30 CD, P < 0.01 and from 27.3 ± 2.1 nmol/g to 20.5 ± 2.2 nmol/g day 60 HFD, P < 0.01) and in plasma. Changes in mitochondrial respiratory complexes were also attenuated by Realsil in HFD rats with a major protective effect on Complex II subunit CII-30. CONCLUSION: Realsil administration effectively contrasts hepatocyte fat deposition, NO derivatives formation, and mitochondrial alterations, allowing the liver to maintain a better glutathione and thioredoxin antioxidant activity.


Assuntos
Fígado Gorduroso/prevenção & controle , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeos/farmacologia , Silimarina/farmacologia , Animais , Biomarcadores/sangue , Deficiência de Colina/complicações , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso/sangue , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Queratina-18/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/sangue , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Proteínas Mitocondriais/metabolismo , Compostos Nitrosos/sangue , Fosfolipídeos/administração & dosagem , Ratos , Ratos Wistar , Silibina , Silimarina/administração & dosagem , Compostos de Sulfidrila/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Tiorredoxinas/sangue , Fatores de Tempo , Tirosina/análogos & derivados , Tirosina/sangue , Vitamina E/farmacologia
16.
J Clin Endocrinol Metab ; 98(4): E683-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23457411

RESUMO

CONTEXT: Pediatric obesity is associated with endothelial dysfunction and hypoadiponectinemia, but the relationship between these two conditions remains to be fully clarified. Whether enhanced release of endothelin-1 (ET-1) may directly impair adiponectin (Ad) production in obese children is not known. OBJECTIVE: The aim of the study was to explore whether and how high circulating levels of ET-1 may contribute to impair Ad production, release, and vascular activity. DESIGN AND PARTICIPANTS: Sixty children were included into obese (Ob; n = 30), overweight (OW; n = 11), and lean (n = 19) groups. Total and high-molecular-weight Ad, ET-1, vascular cell adhesion molecule-1, and von Willebrand factor levels were measured in serum samples. Adipocytes were stimulated with exogenous ET-1 or with sera from lean, OW, and Ob, and Ad production and release measured in the absence or in the presence of ETA (BQ-123) and ETB (BQ-788) receptor blockers, p42/44 MAPK inhibitor PD-98059, or c-Jun NH2-terminal protein kinase inhibitor SP-600125. Vasodilation to Ad was evaluated in rat isolated arteries in the absence or in the presence of BQ-123/788. RESULTS: Total and high-molecular-weight Ad was significantly decreased and ET-1 levels significantly increased in OW (P < .01) and Ob (P < .001) children. A statistically significant linear regression (P < .01) was found between Ad and ET-1. Exposure of adipocytes to exogenous ET-1 or serum from OW and Ob significantly decreased Ad mRNA and protein levels (P < 0.001). The inhibitory effect of ET-1 on Ad was reverted by BQ-123/788 or PD-98059 but not SP-600125. Ad-mediated vasodilation was further increased in arteries pretreated with BQ-123/788. CONCLUSIONS: ET-1-mediated inhibition of Ad synthesis via p42/44 MAPK signaling may provide a possible explanation for hypoadiponectinemia in pediatric obesity and contribute to the development of cardiovascular complications.


Assuntos
Endotelina-1/sangue , Erros Inatos do Metabolismo/sangue , Erros Inatos do Metabolismo/etiologia , Obesidade/sangue , Obesidade/complicações , Células 3T3-L1 , Adiponectina/sangue , Adiponectina/deficiência , Adiponectina/metabolismo , Idade de Início , Animais , Criança , Endotelina-1/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Erros Inatos do Metabolismo/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Obesidade/epidemiologia , Sobrepeso/sangue , Sobrepeso/complicações , Sobrepeso/epidemiologia , Ratos , Ratos Wistar , Magreza/sangue , Magreza/complicações , Magreza/epidemiologia
17.
Mol Cell Neurosci ; 50(3-4): 221-37, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22579730

RESUMO

F3/Contactin is a neuronal surface glycoprotein, which plays a general role in neural development and, in particular, in neuronal and oligodendrocyte differentiation. In a previous study using the F3/EGFP transgenic mice, which express an EGFP reporter under control of the regulatory region from the mouse F3/Contactin gene, the activation of the F3/Contactin promoter was found to correlate with granule and Purkinje neuron differentiation in developing cerebellar cortex. Here we report that in developing cerebral cortex and basal ganglia the F3/Contactin gene is mostly activated during early commitment of neuronal precursors, thus indicating a region-specific profile of its developmental activation. We also report that, in the same structures of F3/EGFP mice, a downregulation of the endogenous F3/Contactin gene occurs, which correlates with upregulation of the dopaminergic phenotype and with locomotor pattern abnormalities. Therefore, F3/EGFP transgenic mice exhibit morphological and functional phenotypes recapitulating those arising from imbalance of the striatal dopaminergic pathway. As for the underlying mechanisms, we postulate that in F3/EGFP mice F3/Contactin downregulation results from the ability of transgene promoter sequences to interfere with the activation of the endogenous gene, thus realizing an F3/Contactin knockdown model, while dopaminergic upregulation is consistent with a general F3/Contactin inhibitory effect on the neuronal phenotype.


Assuntos
Córtex Cerebral/metabolismo , Contactina 1/genética , Neurônios Dopaminérgicos/metabolismo , Regiões Promotoras Genéticas , Substância Negra/metabolismo , Animais , Córtex Cerebral/crescimento & desenvolvimento , Contactina 1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão , Substância Negra/crescimento & desenvolvimento , Transcrição Gênica
18.
J Neuroinflammation ; 9: 49, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22405189

RESUMO

BACKGROUND: In addition to cytotoxic mechanisms directly impacting neurons, ß-amyloid (Aß)-induced glial activation also promotes release of proinflammatory molecules that may self-perpetuate reactive gliosis and damage neighbouring neurons, thus amplifying neuropathological lesions occurring in Alzheimer's disease (AD). Palmitoylethanolamide (PEA) has been studied extensively for its anti-inflammatory, analgesic, antiepileptic and neuroprotective effects. PEA is a lipid messenger isolated from mammalian and vegetable tissues that mimics several endocannabinoid-driven actions, even though it does not bind to cannabinoid receptors. Some of its pharmacological properties are considered to be dependent on the expression of peroxisome proliferator-activated receptors-α (PPARα). FINDINGS: In the present study, we evaluated the effect of PEA on astrocyte activation and neuronal loss in models of Aß neurotoxicity. To this purpose, primary rat mixed neuroglial co-cultures and organotypic hippocampal slices were challenged with Aß1-42 and treated with PEA in the presence or absence of MK886 or GW9662, which are selective PPARα and PPARγ antagonists, respectively. The results indicate that PEA is able to blunt Aß-induced astrocyte activation and, subsequently, to improve neuronal survival through selective PPARα activation. The data from organotypic cultures confirm that PEA anti-inflammatory properties implicate PPARα mediation and reveal that the reduction of reactive gliosis subsequently induces a marked rebound neuroprotective effect on neurons. CONCLUSIONS: In line with our previous observations, the results of this study show that PEA treatment results in decreased numbers of infiltrating astrocytes during Aß challenge, resulting in significant neuroprotection. PEA could thus represent a promising pharmacological tool because it is able to reduce Aß-evoked neuroinflammation and attenuate its neurodegenerative consequences.


Assuntos
Hipocampo/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , PPAR alfa/metabolismo , Ácidos Palmíticos/farmacologia , Amidas , Peptídeos beta-Amiloides/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/citologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Embrião de Mamíferos , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Etanolaminas , Proteína Glial Fibrilar Ácida/metabolismo , Indóis/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , PPAR alfa/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley
19.
PLoS One ; 6(12): e28668, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163051

RESUMO

Peroxisome proliferator-activated receptor-γ (PPARγ) has been reported to be involved in the etiology of pathological features of Alzheimer's disease (AD). Cannabidiol (CBD), a Cannabis derivative devoid of psychomimetic effects, has attracted much attention because of its promising neuroprotective properties in rat AD models, even though the mechanism responsible for such actions remains unknown. This study was aimed at exploring whether CBD effects could be subordinate to its activity at PPARγ, which has been recently indicated as its putative binding site. CBD actions on ß-amyloid-induced neurotoxicity in rat AD models, either in presence or absence of PPAR antagonists were investigated. Results showed that the blockade of PPARγ was able to significantly blunt CBD effects on reactive gliosis and subsequently on neuronal damage. Moreover, due to its interaction at PPARγ, CBD was observed to stimulate hippocampal neurogenesis. All these findings report the inescapable role of this receptor in mediating CBD actions, here reported.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Canabidiol/farmacologia , Hipocampo/metabolismo , Neurogênese , PPAR gama/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Sítios de Ligação , Encéfalo/metabolismo , Inflamação/metabolismo , Masculino , Neurônios/metabolismo , Neurônios/patologia , Óxido Nítrico/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
20.
Mol Pharmacol ; 80(4): 704-13, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21752959

RESUMO

The results of the present work show that the exposure of pregnant rats to low doses of all-trans-retinoic acid (ATRA) (2.5 mg/kg body weight) results in postnatal dysfunction of complex I of the respiratory chain in the cerebellum of the offspring. ATRA had no effect on the postnatal expression of complex I and did not exert any direct inhibitory effect on the enzymatic activity of the complex. The ATRA embryonic exposure resulted, however, in a marked increase in the level of carbonylated proteins in the mitochondrial fraction of the cerebellum, in particular of complex I subunits. The postnatal increase of the carbonylated proteins correlated directly with the inhibition of the activity of complex I. ATRA had, on the other hand, no effect on oxygen free-radical scavengers. It is proposed that embryonic exposure to ATRA results in impairment of protein surveillance in the cerebellum, which persists after birth and results in accumulation of oxidatively damaged complex I.


Assuntos
Cerebelo/efeitos dos fármacos , Cerebelo/enzimologia , Complexo I de Transporte de Elétrons/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Tretinoína/toxicidade , Animais , Animais Recém-Nascidos , Cerebelo/embriologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/biossíntese , Feminino , Masculino , Estresse Oxidativo/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Distribuição Aleatória , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...