Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(11)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36365085

RESUMO

The increasing progression of biopharmaceutical-based therapies highlights the demand for efficient chromatographic methods that can be used to purify the desired biomolecules (e.g., nucleic acids, enzymes, or monoclonal antibodies) which are presently under consideration in clinical trials or approved by the Food and Drug Administration. These molecules present distinct chemical and structural properties, which are critical cues for the development and production of adequate chromatographic supports. Until now, it has not been possible to fully control the characteristics of the chromatographic matrices to assure the total reproducibility of their structure and packing. Meanwhile, three-dimensional printing (3DP) is in the early stage of its use in the production of chromatographic supports as a fast, very precise, and reproducible methodology. Although 3DP can provide excellent performance properties to the chromatographic structures, it cannot, per se, lead to high-quality pharmaceutical products. However, the association of affinity ligands, such as amino acids, which is possible in 3DP, could enable the attainment of high-purity yields of the desired molecules. Beyond the amino acids most widely studied as chromatographic ligands, arginine has been successfully immobilized on different chromatographic supports (namely, agarose bead matrices, macroporous matrices, and monoliths) to achieve extra-pure gene therapy products. In this research, we studied the immobilization of arginine on 3DP chromatographic supports, evaluating the stability of the ligand/chromatographic support linkage under different chromatographic conditions to determine the robustness of these new prototypes. Moreover, we also applied plasmid DNA samples to these supports to observe the practical behaviour of the developed arginine 3DP chromatographic structures.

2.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163090

RESUMO

The current worldwide pandemic caused by coronavirus disease 2019 (COVID-19) had alerted the population to the risk that small microorganisms can create for humankind's wellbeing and survival. All of us have been affected, directly or indirectly, by this situation, and scientists all over the world have been trying to find solutions to fight this virus by killing it or by stop/decrease its spread rate. Numerous kinds of microorganisms have been occasionally created panic in world history, and several solutions have been proposed to stop their spread. Among the most studied antimicrobial solutions, are metals (of different kinds and applied in different formats). In this regard, this review aims to present a recent and comprehensive demonstration of the state-of-the-art in the use of metals, as well as their mechanisms, to fight different pathogens, such as viruses, bacteria, and fungi.


Assuntos
Anti-Infecciosos , Metais/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/patogenicidade , COVID-19/prevenção & controle , Equipamentos e Provisões , Fungos/efeitos dos fármacos , Fungos/patogenicidade , Humanos , Pandemias/prevenção & controle , Saúde da População , SARS-CoV-2/fisiologia , Vírus/efeitos dos fármacos , Vírus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...