Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Tissue Eng Regen Med ; 11(3): 787-799, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-25492026

RESUMO

miRNA-1 (miR-1) and miRNA-133a (miR-133a) are muscle-specific miRNAs that play an important role in heart development and physiopathology. Although both miRNAs have been broadly studied during cardiogenesis, the mechanisms by which miR-1 and miR-133a could influence linage commitment in pluripotent stem cells remain poorly characterized. In this study we analysed the regulation of miR-1 and miR-133a expression during pluripotent stem cell differentiation [P19.CL6 cells; embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] and investigated their role in DMSO and embryoid body (EB)-mediated mesodermal and cardiac differentiation by gain- and loss-of-function studies, as well as in vivo, by the induction of teratomas. Gene expression analysis revealed that miR-1 and miR-133a are upregulated during cardiac differentiation of P19.CL6 cells, and also during ESC and iPSC EB differentiation. Forced overexpression of both miRNAs promoted mesodermal commitment and a concomitant decrease in the expression of neural differentiation markers. Moreover, overexpression of miR-1 enhanced the cardiac differentiation of P19.CL6, while miR-133a reduced it with respect to control cells. Teratoma formation experiments with P19.CL6 cells confirmed the influence of miR-1 and miR-133a during in vivo differentiation. Finally, inhibition of both miRNAs during P19.CL6 cardiac differentiation had opposite results to their overexpression. In conclusion, gene regulation involving miR-1 and miR-133a controls the mesodermal and cardiac fate of pluripotent stem cells. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , MicroRNAs/metabolismo , Miocárdio/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mesoderma/citologia , Camundongos SCID , MicroRNAs/genética , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo
2.
PLoS One ; 9(4): e93074, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24691161

RESUMO

Polµ is an error-prone PolX polymerase that contributes to classical NHEJ DNA repair. Mice lacking Polµ (Polµ(-/-)) show altered hematopoiesis homeostasis and DSB repair and a more pronounced nucleolytic resection of some V(D)J junctions. We previously showed that Polµ(-/-) mice have increased learning capacity at old ages, suggesting delayed brain aging. Here we investigated the effect of Polµ(-/-) deficiency on liver aging. We found that old Polµ(-/-) mice (>20 month) have greater liver regenerative capacity compared with wt animals. Old Polµ(-/-) liver showed reduced genomic instability and increased apoptosis resistance. However, Polµ(-/-) mice did not show an extended life span and other organs (e.g., heart) aged normally. Our results suggest that Polµ deficiency activates transcriptional networks that reduce constitutive apoptosis, leading to enhanced liver repair at old age.


Assuntos
Envelhecimento/patologia , DNA Polimerase Dirigida por DNA/deficiência , Fígado/patologia , Estresse Oxidativo , Animais , Instabilidade Genômica , Fígado/fisiopatologia , Testes de Função Hepática , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Miocárdio/patologia , Fenótipo , Troca de Cromátide Irmã
3.
BMC Med Genet ; 11: 61, 2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-20403157

RESUMO

BACKGROUND: GTF2I codes for a general intrinsic transcription factor and calcium channel regulator TFII-I, with high and ubiquitous expression, and a strong candidate for involvement in the morphological and neuro-developmental anomalies of the Williams-Beuren syndrome (WBS). WBS is a genetic disorder due to a recurring deletion of about 1,55-1,83 Mb containing 25-28 genes in chromosome band 7q11.23 including GTF2I. Completed homozygous loss of either the Gtf2i or Gtf2ird1 function in mice provided additional evidence for the involvement of both genes in the craniofacial and cognitive phenotype. Unfortunately nothing is now about the behavioral characterization of heterozygous mice. METHODS: By gene targeting we have generated a mutant mice with a deletion of the first 140 amino-acids of TFII-I. mRNA and protein expression analysis were used to document the effect of the study deletion. We performed behavioral characterization of heterozygous mutant mice to document in vivo implications of TFII-I in the cognitive profile of WBS patients. RESULTS: Homozygous and heterozygous mutant mice exhibit craniofacial alterations, most clearly represented in homozygous condition. Behavioral test demonstrate that heterozygous mutant mice exhibit some neurobehavioral alterations and hyperacusis or odynacusis that could be associated with specific features of WBS phenotype. Homozygous mutant mice present highly compromised embryonic viability and fertility. Regarding cellular model, we documented a retarded growth in heterozygous MEFs respect to homozygous or wild-type MEFs. CONCLUSION: Our data confirm that, although additive effects of haploinsufficiency at several genes may contribute to the full craniofacial or neurocognitive features of WBS, correct expression of GTF2I is one of the main players. In addition, these findings show that the deletion of the fist 140 amino-acids of TFII-I altered it correct function leading to a clear phenotype, at both levels, at the cellular model and at the in vivo model.


Assuntos
Anormalidades Múltiplas/genética , Fatores de Transcrição TFII/fisiologia , Síndrome de Williams/genética , Animais , Transtornos Cognitivos/genética , Anormalidades Craniofaciais/genética , Heterozigoto , Homozigoto , Hiperacusia/genética , Camundongos , Camundongos Mutantes , Fenótipo , Deleção de Sequência , Fatores de Transcrição TFII/genética
4.
EMBO Rep ; 8(2): 173-80, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17205076

RESUMO

Shugoshin (SGO) is a family of proteins that protect centromeric cohesin complexes from release during mitotic prophase and from degradation during meiosis I. Two mammalian SGO paralogues - SGO1 and SGO2 - have been identified, but their distribution and function during mammalian meiosis have not been reported. Here, we analysed the expression of SGO2 during male mouse meiosis and mitosis. During meiosis I, SGO2 accumulates at centromeres during diplotene, and colocalizes differentially with the cohesin subunits RAD21 and REC8 at metaphase I centromeres. However, SGO2 and RAD21 change their relative distributions during telophase I when sister-kinetochore association is lost. During meiosis II, SGO2 shows a striking tension-dependent redistribution within centromeres throughout chromosome congression during prometaphase II, as it does during mitosis. We propose a model by which the redistribution of SGO2 would unmask cohesive centromere proteins, which would be then released or cleaved by separase, to trigger chromatid segregation to opposite poles.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Meiose/fisiologia , Espermatócitos/fisiologia , Animais , Proteínas de Ligação a DNA , Imunofluorescência , Masculino , Camundongos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo
5.
J Biol Chem ; 279(8): 6553-9, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14660624

RESUMO

Cohesins hold sister chromatids together from DNA replication until they are segregated. Although cohesins Smc1, Smc3, and Scc1/Rad21 are involved in chromatid cohesion and other cellular processes, little is known about the other mitotic cohesin subunit, Scc3/STAG. Here we describe STAG/Scc3, which may act as a transcriptional co-activator. STAG2 is able to enhance the activity of the tumor necrosis factor alpha, the CD69, and the human immunodeficiency virus long terminal repeat promoters in a NF-kappaB-dependent manner. In addition, STAG2 interacts with the viral transactivator Tat and enhances the Tat-mediated activation of the human immunodeficiency virus long terminal repeat promoter. Moreover, STAG2 co-activates a multimeric NF-kappaB reporter construct and enhances the activity of the transactivation domain of p65/RelA in a Gal4 system. This function is dependent on one of the LXXLL co-activation motives present in this cohesin and is substantiated by the interaction of STAG2 with the p65 subunit of NF-kappaB. These results describe a novel activity for cohesins, suggesting a role for STAG/Scc3 in transcriptional regulation.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/genética , Transativadores/química , Transativadores/genética , Ativação Transcricional , Motivos de Aminoácidos , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas Cromossômicas não Histona , DNA/química , Proteínas de Ligação a DNA , Proteínas Fúngicas , Repetição Terminal Longa de HIV , Humanos , Células Jurkat , Células K562 , Lectinas Tipo C , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fator de Necrose Tumoral alfa/metabolismo , Coesinas
6.
EMBO Rep ; 3(6): 543-50, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12034751

RESUMO

STAG/SA proteins are specific cohesin complex subunits that maintain sister chromatid cohesion in mitosis and meiosis. Two members of this family, STAG1/SA1 and STAG2/SA2,double dagger are classified as mitotic cohesins, as they are found in human somatic cells and in Xenopus laevis as components of the cohesin(SA1) and cohesin(SA2) complexes, in which the shared subunits are Rad21/SCC1, SMC1 and SMC3 proteins. A recently reported third family member, STAG3, is germinal cell-specific and is a subunit of the meiotic cohesin complex. To date, the meiosis-specific cohesin complex has been considered to be responsible for sister chromatid cohesion during meiosis. We studied replacement of the mitotic by the meiotic cohesin complex during mouse germinal cell maturation, and we show that mammalian STAG2 and Rad21 are also involved in several meiosis stages. Immunofluorescence results suggest that a cohesin complex containing Rad21 and STAG2 cooperates with a STAG3-specific complex to maintain sister chromatid cohesion during the diplotene stage of meiosis.


Assuntos
Meiose/fisiologia , Proteínas Nucleares/fisiologia , Fosfoproteínas/fisiologia , Animais , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Imunofluorescência , Camundongos , Mitose/fisiologia , Dados de Sequência Molecular , Proteínas Nucleares/genética , Fosfoproteínas/genética , Prófase/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...