Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904731

RESUMO

The causes of ventricular fibrillation (VF) are not yet elucidated, and it has been proposed that different mechanisms might exist. Moreover, conventional analysis methods do not seem to provide time or frequency domain features that allow for recognition of different VF patterns in electrode-recorded biopotentials. The present work aims to determine whether low-dimensional latent spaces could exhibit discriminative features for different mechanisms or conditions during VF episodes. For this purpose, manifold learning using autoencoder neural networks was analyzed based on surface ECG recordings. The recordings covered the onset of the VF episode as well as the next 6 min, and comprised an experimental database based on an animal model with five situations, including control, drug intervention (amiodarone, diltiazem, and flecainide), and autonomic nervous system blockade. The results show that latent spaces from unsupervised and supervised learning schemes yielded moderate though quite noticeable separability among the different types of VF according to their type or intervention. In particular, unsupervised schemes reached a multi-class classification accuracy of 66%, while supervised schemes improved the separability of the generated latent spaces, providing a classification accuracy of up to 74%. Thus, we conclude that manifold learning schemes can provide a valuable tool for studying different types of VF while working in low-dimensional latent spaces, as the machine-learning generated features exhibit separability among different VF types. This study confirms that latent variables are better VF descriptors than conventional time or domain features, making this technique useful in current VF research on elucidation of the underlying VF mechanisms.


Assuntos
Eletrocardiografia , Fibrilação Ventricular , Animais , Eletrocardiografia/métodos , Redes Neurais de Computação
2.
Sensors (Basel) ; 17(10)2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29035333

RESUMO

Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer's kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer's kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...