Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 871: 162082, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754331

RESUMO

Interest is growing in simple, fast and inexpensive systems to analyze urban wastewater quality in real time. In this research project, a methodology is presented for the characterization of COD, BOD5, TSS, TN, and TP of wastewater samples, without the need to alter the samples or use chemical reagents, from a few wavelengths, belonging to the different color groups that compose the visible spectrum in isolation: (380-700 nm): violet (380-427 nm), blue (427-476 nm), cyan (476-497 nm), green (497-570 nm), yellow (570-581 nm), orange (581-618 nm), and red (618-700 nm). In this study, about 650 raw and treated urban wastewater samples from over 43 WWTPs and a total of 36 estimation models based on genetic algorithms have been calculated. Seven models were calculated for each pollutant parameter; one model for each color group of the visible spectrum, except for TN, which includes an additional model combining the wavelengths of the violet and red region of the spectrum. All the calculated models showed high accuracy, with an R2 between 80 and 85 % for COD, BOD5 and TSS, and 66-74 % for TN and TP. The tests carried out have shown the accuracy of the models of the different color groups to be very close to each other. However, it is noted that the models making use of the wavelengths between 497 and 570 nm (green) were the ones that showed the best performance in all the parameters under study. This research work lays the foundations for the development of cheaper, faster, and simpler wastewater monitoring and characterization equipment.

2.
Water Sci Technol ; 85(9): 2565-2580, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35576253

RESUMO

In an urban wastewater treatment plant (WWTP), early knowledge of the pollutant load levels throughout the plant is key to optimize its processes and achieve better purification levels. Molecular spectrophotometry has begun to gain prominence in this wastewater characterization process, as it is a simple, fast, inexpensive and non-invasive technique. In this research work, different mathematical models based on genetic algorithms have been developed for the estimation of chemical oxygen demand (COD) and total suspended solids (TSS) from the spectral response of the samples, measured in the 380-700 nm range by means of a light-emitting diode (LED) spectrophotometer developed by the researchers. A field campaign was carried out in Mapocho-Trebal WWTP (Chile), where 550 samples were obtained in three different parts of the plant: at the inlet (raw wastewater), at the outlet (secondary treated wastewater) and at the outlet of the primary clarifier. A total of 18 estimation models have been calculated by mean of HeuristicLab software, which have presented a high accuracy, with a Pearson's coefficient between 80 and 90% in most cases. In order to achieve the most accurate models possible to characterize each part of the plant, specific models have also been developed, as well as combined models that are valid for all types of wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Análise da Demanda Biológica de Oxigênio , Modelos Genéticos , Espectrofotometria , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Purificação da Água/métodos
3.
Chemosphere ; 293: 133610, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35051514

RESUMO

Measuring how the pollution load evolves in real time along sewer networks is key for proper management of water resources and protecting the environment. The technique of molecular spectroscopy for water characterization has increasingly widespread use, as it is a non-invasive technique that leads to the correlation of the physical-chemical conditions of wastewater with spectroscopic surrogates by a series of mathematical estimation models. In the present research work, different symbolic regression models obtained with evolutive genetic algorithms are evaluated for the estimation of chemical oxygen demand (COD); five-day biochemical oxygen demand (BOD5); total suspended solids (TSS); total phosphorus (TP); and total nitrogen (TN), from the spectral response of samples measured between 380 and 700 nm and without the use of chemicals or pre-treatment. Around 650 wastewater samples were used in the campaign, from 43 different wastewater treatment plants (WWTP) in which both, raw/influent and treated/effluent, were examined through 18 models composed of Classical Genetic Algorithm (CGA), the Age-Layered Population Structure (ALPS), and Offspring Selection (OS) by mean of HeuristicLab software, to make a comparison among them and to determine which models and wavelengths are most suitable for the correlation. Models are proposed considering both raw and treated samples together (15) and only with tertiary treated wastewater reclaimed for agriculture irrigation effluent (3). The Pearson correlation coefficients were in the range of 67-91% for the test data in the case of the combined models. The results conform the first steps for a real-time monitoring of WWTP.


Assuntos
Purificação da Água , Algoritmos , Análise da Demanda Biológica de Oxigênio , Análise Custo-Benefício , Nitrogênio , Análise Espectral , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Purificação da Água/métodos
4.
Sensors (Basel) ; 20(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019750

RESUMO

Local administrations are increasingly demanding real-time continuous monitoring of pollution in the sanitation system to improve and optimize its operation, to comply with EU environmental policies and to reach European Green Deal targets. The present work shows a full-scale Wastewater Treatment Plant field-sampling campaign to estimate COD, BOD5, TSS, P, TN and NO3-N in both influent and effluent, in the absence of pre-treatment or chemicals addition to the samples, resulting in a reduction of the duration and cost of analysis. Different regression models were developed to estimate the pollution load of sewage systems from the spectral response of wastewater samples measured at 380-700 nm through multivariate linear regressions and machine learning genetic algorithms. The tests carried out concluded that the models calculated by means of genetic algorithms can estimate the levels of five of the pollutants under study (COD, BOD5, TSS, TN and NO3-N), including both raw and treated wastewater, with an error rate below 4%. In the case of the multilinear regression models, these are limited to raw water and the estimate is limited to COD and TSS, with less than a 0.5% error rate.

5.
Sensors (Basel) ; 20(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575743

RESUMO

Spectrophotometry has proven to be an effective non-invasive technique for the characterization of the pollution load of sewer systems, enabling compliance with new environmental protection regulations. This type of equipment has costs and an energy consumption which make it difficult to place it inside a sewer network for real-time and massive monitoring. These shortcomings are mainly due to the use of incandescent lamps to generate the working spectrum as they often require the use of optical elements, such as diffraction gratings, to work. The search for viable alternatives to incandescent lamps is key to the development of portable equipment that is cheaper and with a lower consumption that can be used in different points of the sewer network. This research work achieved the following results in terms of the measured samples: First, the development a calibration procedure that enables the use of RGB-LED technology as a viable alternative to incandescent lamps, within the range of 510 to 645 nm, with high accuracy. Secondly, demonstration of a simple method to model the transmittance value of a specific wavelength without the need for optical elements, achieving a cost-effective equipment. Thirdly, it provides a simple method to obtain the transmittance based on the combination of RGB colors. Finally its viability is demonstrated for the spectral analysis of wastewater.

6.
Sensors (Basel) ; 19(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277445

RESUMO

Local administrations demand real-time and continuous pollution monitoring in sewer networks. Spectroscopy is a non-destructive technique that can be used to continuously monitor quality in sewers. Covering a wide range of wavelengths can be useful for improving pollution characterization in wastewater. Cost-effective and in-sewer spectrophotometers would contribute to accomplishing discharge requirements. Nevertheless, most available spectrometers are based on incandescent lamps, which makes it unfeasible to place them in a sewerage network for real-time monitoring. This research work shows an innovative calibration procedure that allows (Light-Emitting Diode) LED technology to be used as a replacement for traditional incandescent lamps in the development of spectrophotometry equipment. This involves firstly obtaining transmittance values similar to those provided by incandescent lamps, without using any optical components. Secondly, this calibration process enables an increase in the range of wavelengths available (working range) through a better use of the LED's spectral width, resulting in a significant reduction in the number of LEDs required. Thirdly, this method allows important reductions in costs, dimensions and consumptions to be achieved, making its implementation in a wide variety of environments possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...