Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Exp Bot ; 72(11): 3956-3970, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33764460

RESUMO

In C3 cereals such as wheat and barley, grain filling was traditionally explained as being sustained by assimilates from concurrent leaf photosynthesis and remobilization from the stem. In recent decades, a role for ear photosynthesis as a contributor to grain filling has emerged. This review analyzes several aspects of this topic: (i) methodological approaches for estimation of ear photosynthetic contribution to grain filling; (ii) the existence of genetic variability in the contribution of the ear, and evidence of genetic gains in the past; (iii) the controversy of the existence of C4 metabolism in the ear; (iv) the response of ear photosynthesis to water deficit; and (v) morphological and physiological traits possibly related to ear temperature and thermal balance of the ear. The main conclusions are: (i) there are a number of methodologies to quantify ear photosynthetic activity (e.g. gas exchange and chlorophyll fluorescence) and the contribution of the ear to grain filling (individual ear shading, ear emergence in shaded canopies, and isotope composition); (ii) the contribution of ear photosynthesis seems to have increased in modern wheat germplasm; (iii) the contribution of the ear to grain filling increases under resource-limitation (water deficit, defoliation, or pathogen infection); (iv) there is genetic variability in the contribution of the ear in wheat, opening up the possibility to use this trait to ameliorate grain yield; (v) current evidence supports the existence of C3 metabolism rather than C4 metabolism; (vi) the ear is a 'dehydration avoider organ' under drought; and (vii) thermal balance in the ear is a relevant issue to explore, and more research is needed to clarify the underlying morphological and physiological traits.


Assuntos
Grão Comestível , Hordeum , Fotossíntese , Folhas de Planta , Triticum/genética
2.
Plant J ; 99(3): 465-477, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30985038

RESUMO

Chlorophyll (Chl) loss is the main visible symptom of senescence in leaves. The initial steps of Chl degradation operate within the chloroplast, but the observation that 'senescence-associated vacuoles' (SAVs) contain Chl raises the question of whether SAVs might also contribute to Chl breakdown. Previous confocal microscope observations (Martínez et al., 2008) showed many SAVs containing Chl. Isolated SAVs contained Chl a and b (with a Chl a/b ratio close to 5) and lower levels of chlorophyllide a. Pheophytin a and pheophorbide a were formed after the incubation of SAVs at 30°C in darkness, suggesting the presence of Chl-degrading activities in SAVs. Chl in SAVs was bound to a number of 'green bands'. In the most abundant green band of SAVs, Western blot analysis showed the presence of photosystem I (PSI) Chl-binding proteins, including the PsaA protein of the PSI reaction center and the apoproteins of the light-harvesting complexes (Lhca 1-4). This was confirmed by: (i) measurements of 77-K fluorescence emission spectra showing a single emission peak at around 730 nm in SAVs; (ii) mass spectrometry of the most prominent green band with the slowest electrophoretic mobility; and (iii) immunofluorescence detection of PsaA in SAVs observed through confocal microscopy. Incubation of SAVs at 30°C in darkness caused a steady decrease in PsaA levels. Overall, these results indicate that SAVs may be involved in the degradation of PSI proteins and their associated chlorophylls during the senescence of leaves.


Assuntos
Clorofila/metabolismo , Cloroplastos/metabolismo , Nicotiana/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo , Envelhecimento , Senescência Celular , Escuridão , Plastídeos/metabolismo , Proteólise
3.
Plants (Basel) ; 3(4): 498-512, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27135516

RESUMO

Degradation of chloroplasts and chloroplast components is a distinctive feature of leaf senescence. In spite of its importance in the nutrient economy of plants, knowledge about the mechanism(s) involved in the breakdown of chloroplast proteins is incomplete. A novel class of vacuoles, "senescence-associated vacuoles" (SAVs), characterized by intense proteolytic activity appear during senescence in chloroplast-containing cells of leaves. Since SAVs contain some chloroplast proteins, they are candidate organelles to participate in chloroplast breakdown. In this review we discuss the characteristics of SAVs, and their possible involvement in the degradation of Rubisco, the most abundant chloroplast protein. Finally, SAVs are compared with other extra-plastidial protein degradation pathways operating in senescing leaves.

4.
J Exp Bot ; 64(16): 4967-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24106291

RESUMO

Breakdown of leaf proteins, particularly chloroplast proteins, is a massive process in senescing leaves. In spite of its importance in internal N recycling, the mechanism(s) and the enzymes involved are largely unknown. Senescence-associated vacuoles (SAVs) are small, acidic vacuoles with high cysteine peptidase activity. Chloroplast-targeted proteins re-localize to SAVs during senescence, suggesting that SAVs might be involved in chloroplast protein degradation. SAVs were undetectable in mature, non-senescent tobacco leaves. Their abundance, visualized either with the acidotropic marker Lysotracker Red or by green fluorescent protein (GFP) fluorescence in a line expressing the senescence-associated cysteine protease SAG12 fused to GFP, increased during senescence induction in darkness, and peaked after 2-4 d, when chloroplast dismantling was most intense. Increased abundance of SAVs correlated with higher levels of SAG12 mRNA. Activity labelling with a biotinylated derivative of the cysteine protease inhibitor E-64 was used to detect active cysteine proteases. The two apparently most abundant cysteine proteases of senescing leaves, of 40kDa and 33kDa were detected in isolated SAVs. Rubisco degradation in isolated SAVs was completely blocked by E-64. Treatment of leaf disks with E-64 in vivo substantially reduced degradation of Rubisco and leaf proteins. Overall, these results indicate that SAVs contain most of the cysteine protease activity of senescing cells, and that SAV cysteine proteases are at least partly responsible for the degradation of stromal proteins of the chloroplast.


Assuntos
Senescência Celular , Cloroplastos/enzimologia , Cisteína Proteases/metabolismo , Nicotiana/enzimologia , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Vacúolos/enzimologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Cloroplastos/efeitos dos fármacos , Cloroplastos/genética , Cloroplastos/efeitos da radiação , Cisteína Proteases/genética , Inibidores de Cisteína Proteinase/farmacologia , Escuridão , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/efeitos da radiação , Vacúolos/efeitos dos fármacos , Vacúolos/genética , Vacúolos/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA