Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 196: 115609, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806012

RESUMO

Microparticles (MP; particles <5 mm) are ubiquitous in marine environments. Understanding MP concentrations at different spatial scales in the Salish Sea, Washington, USA, can provide insight into how ecologically and economically important species may be affected. We collected mussels across the Salish Sea at regional and localized scales, chemically processed tissue to assess MP contamination, and used visual and chemical analyses for particle identification. Throughout the Salish Sea, mussel MP concentrations averaged 0.75 ± 0.09 MP g-1 wet tissue. At a regional scale, we identified slight differences in concentrations and morphotypes of MP while at a localized scale these metrics were not significant and did not differ from controls. In a subset of particles, 20 % were identified as synthetic materials, which include polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and nylon. Differences in MP sources, heterogeneous transport of MP, and distinct shellfish feeding mechanisms may contribute to plastic contamination patterns in the Salish Sea.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Plásticos/análise , Washington , Monitoramento Ambiental , Poluentes Químicos da Água/análise
2.
Integr Org Biol ; 4(1): obac003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35274078

RESUMO

The mechanical properties of intestinal tissues determine how a thin-walled structure exerts forces on food and absorbs the force of food as it enters and travels down the gut. These properties are critically important in durophagous and stomachless fish, which must resist the potential damage to foreign bodies (e.g., shells fragments) in their diet. We test the hypothesis that the mechanical properties of the alimentary tract will differ along its length. We predict that the proximal region of the gut should be the strongest and most extensible to handle the large influx of prey often associated with stomachless fish that lack a storage depot. We developed a custom inflation technique to measure the passive mechanical properties of the whole intestine of the stomachless shiner perch, Cymatogaster aggregata. We show that mechanical properties differ significantly along the length of the alimentary tract when inflated to structural failure, with 25-46% greater maximal stress, strain, extension ratio, and toughness at the proximal (25%) position. We also find that the alimentary tissues (excluding the heavily muscular rectum) are generally highly extensible and anisotropic, and do not differ in wall circumference or thickness along the alimentary tract. These findings contribute to our knowledge of the mechanical properties of fish intestinal tissues and guide future studies of factors influencing the evolution of fish alimentary systems.


Les propriétés mécaniques des tissus intestinaux déterminent la manière dont une structure à paroi mince exerce des forces sur les aliments et absorbe leur force lorsque ceux-ci pénètrent et descendent dans l'intestin. Ces propriétés sont d'une importance capitale chez les poissons durophages et ceux sans estomac qui doivent résister aux possibles dommages que peuvent provoquer l'ingestion de corps étrangers (comme des fragments de coquilles) lorsqu'ils s'alimentent. Nous testons l'hypothèse selon laquelle les propriétés mécaniques du tube digestif diffèrent sur sa longueur. Nous prédisons que la région proximale de l'intestin devrait être la plus solide et la plus extensible pour gérer le grand afflux de proies souvent associé aux poissons sans estomac qui n'ont pas de capacité de stockage. Nous avons élaboré une technique de gonflage propre pour mesurer les propriétés mécaniques passives de l'ensemble de l'intestin de la perche méné dépourvue d'estomac, Cymatogaster aggregata. Nous montrons que les propriétés mécaniques diffèrent significativement le long du tube digestif lorsqu'il est gonflé jusqu'à une défaillance structurelle, avec une contrainte maximale, une déformation, un rapport d'extension et une résistance supérieurs de 25 à 46% à la position proximale (25%). Nous constatons également que les tissus de l'appareil digestif (à l'exclusion du rectum fortement musclé) sont généralement très extensibles et anisotropes, et ne diffèrent pas par la circonférence ou l'épaisseur de la paroi le long du tube digestif. Ces résultats contribuent à notre connaissance des propriétés mécaniques des tissus intestinaux des poissons et orientent les futures études sur les facteurs influençant l'évolution des systèmes alimentaires des poissons.

3.
Trends Ecol Evol ; 36(9): 860-873, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34218955

RESUMO

Physical principles and laws determine the set of possible organismal phenotypes. Constraints arising from development, the environment, and evolutionary history then yield workable, integrated phenotypes. We propose a theoretical and practical framework that considers the role of changing environments. This 'ecomechanical approach' integrates functional organismal traits with the ecological variables. This approach informs our ability to predict species shifts in survival and distribution and provides critical insights into phenotypic diversity. We outline how to use the ecomechanical paradigm using drag-induced bending in trees as an example. Our approach can be incorporated into existing research and help build interdisciplinary bridges. Finally, we identify key factors needed for mass data collection, analysis, and the dissemination of models relevant to this framework.


Assuntos
Evolução Biológica , Ecossistema , Fenótipo , Árvores
4.
Mar Pollut Bull ; 165: 112165, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33611232

RESUMO

Microplastic (MP; < 5 mm) is ubiquitous in marine environments and is likely transported by biotic benthic-pelagic coupling. Mussels are key benthic-pelagic couplers, concentrating particles from the water column into dense and nutrient rich biodeposits. This study examined how MP affects benthic-pelagic coupling processes of mussels exposed to feeding regimes with and without MP by measuring four attributes of biodeposits: 1) morphology, 2) quantity of algal and MP particles, 3) sinking rate, and 4) resuspension velocity. We found interacting effects of particle treatment and biodeposit type on biodeposit morphology. Biodeposits from the algae treatment contained more algal cells on average than biodeposits from the MP treatment. Biodeposits from the MP treatment sank 34-37% slower and resuspended in 7-22% slower shear velocities than biodeposits from the algae treatment. Decreases in sinking and resuspension velocities of biodeposits containing MP may increase dispersal distances, thus decreasing in-bed nutrient input and increasing nutrient subsidies for other communities.


Assuntos
Bivalves , Microplásticos , Animais , Plantas , Plásticos , Alimentos Marinhos
5.
Proteomics ; 21(2): e2000014, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910497

RESUMO

Mussel byssus represents a fascinating class of biological materials with a unique capacity to adhere onto virtually any solid surface. Proteins expressed in byssus, the byssal-producing organ (foot) as well as mantle tissue from Mytilus edulis or Mytilus californianus are analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The mantle is used as a control tissue to pinpoint unique proteins from the foot samples potentially involved in byssogenesis. This work represents an important step towards identifying biologically important proteins expressed in foot, as well as extending knowledge on the byssus proteome. Considering the minimal proteomics data of the studied species, this data also contributes to a more complete description of M. edulis and M. californianus proteomes.


Assuntos
Mytilus , Animais , Cromatografia Líquida , Proteoma , Proteômica , Espectrometria de Massas em Tandem
6.
Conserv Physiol ; 7(1): coz068, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687146

RESUMO

Predicting how combinations of stressors will affect failure risk is a key challenge for the field of ecomechanics and, more generally, ecophysiology. Environmental conditions often influence the manufacture and durability of biomaterials, inducing structural failure that potentially compromises organismal reproduction, growth, and survival. Species known for tight linkages between structural integrity and survival include bivalve mussels, which produce numerous byssal threads to attach to hard substrate. Among the current environmental threats to marine organisms are ocean warming and acidification. Elevated pCO2 exposure is known to weaken byssal threads by compromising the strength of the adhesive plaque. This study uses structural analysis to evaluate how an additional stressor, elevated temperature, influences byssal thread quality and production. Mussels (Mytilus trossulus) were placed in controlled temperature and pCO2 treatments, and then, newly produced threads were counted and pulled to failure to determine byssus strength. The effects of elevated temperature on mussel attachment were dramatic; mussels produced 60% weaker and 65% fewer threads at 25°C in comparison to 10°C. These effects combine to weaken overall attachment by 64-88% at 25°C. The magnitude of the effect of pCO2 on thread strength was substantially lower than that of temperature and, contrary to our expectations, positive at high pCO2 exposure. Failure mode analysis localized the effect of temperature to the proximal region of the thread, whereas pCO2 affected only the adhesive plaques. The two stressors therefore act independently, and because their respective target regions are interconnected (resisting tension in series), their combined effects on thread strength are exactly equal to the effect of the strongest stressor. Altogether, these results show that mussels, and the coastal communities they support, may be more vulnerable to the negative effects of ocean warming than ocean acidification.

7.
J R Soc Interface ; 15(147)2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355807

RESUMO

Marine mussels (Mytilus spp.) attach to a wide variety of surfaces underwater using a network of byssal threads, each tipped with a protein-based adhesive plaque that uses the surrounding seawater environment as a curing agent. Plaques undergo environmental post-processing, requiring a basic seawater pH be maintained for up to 8 days for the adhesive to strengthen completely. Given the sensitivity of plaques to local pH conditions long after deposition, we investigated the effect of other aspects of the seawater environment that are known to vary in nearshore habitats on plaque curing. The effect of seawater temperature, salinity and dissolved oxygen concentration were investigated using tensile testing, atomic force microscopy and amino acid compositional analysis. High temperature (30°C) and hyposalinity (1 PSU) had no effect on adhesion strength, while incubation in hypoxia (0.9 mg l-1) caused plaques to have a mottled coloration and prematurely peel from substrates, leading to a 51% decrease in adhesion strength. AFM imaging of the plaque cuticle found that plaques cured in hypoxia had regions of lower stiffness throughout, indicative of reductions in DOPA cross-linking between adhesive proteins. A better understanding of the dynamics of plaque curing could aid in the design of better synthetic adhesives, particularly in medicine where adhesion must take place within wet body cavities.


Assuntos
Adesividade , Estruturas Animais/química , Di-Hidroxifenilalanina/química , Di-Hidroxifenilalanina/fisiologia , Mytilus/fisiologia , Oxigênio/química , Animais , Microscopia de Força Atômica
8.
Ecol Evol ; 8(11): 5279-5290, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29938052

RESUMO

Changing environments have the potential to alter the fitness of organisms through effects on components of fitness such as energy acquisition, metabolic cost, growth rate, survivorship, and reproductive output. Organisms, on the other hand, can alter aspects of their physiology and life histories through phenotypic plasticity as well as through genetic change in populations (selection). Researchers examining the effects of environmental variables frequently concentrate on individual components of fitness, although methods exist to combine these into a population level estimate of average fitness, as the per capita rate of population growth for a set of identical individuals with a particular set of traits. Recent advances in energetic modeling have provided excellent data on energy intake and costs leading to growth, reproduction, and other life-history parameters; these in turn have consequences for survivorship at all life-history stages, and thus for fitness. Components of fitness alone (performance measures) are useful in determining organism response to changing conditions, but are often not good predictors of fitness; they can differ in both form and magnitude, as demonstrated in our model. Here, we combine an energetics model for growth and allocation with a matrix model that calculates population growth rate for a group of individuals with a particular set of traits. We use intertidal mussels as an example, because data exist for some of the important energetic and life-history parameters, and because there is a hypothesized energetic trade-off between byssus production (affecting survivorship), and energy used for growth and reproduction. The model shows exactly how strong this trade-off is in terms of overall fitness, and it illustrates conditions where fitness components are good predictors of actual fitness, and cases where they are not. In addition, the model is used to examine the effects of environmental change on this trade-off and on both fitness and on individual fitness components.

9.
Biofouling ; 34(4): 388-397, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29637795

RESUMO

Marine mussels (Mytilus trossulus) attach to a wide variety of surfaces underwater using a protein adhesive that is cured by the surrounding seawater environment. In this study, the influence of environmental post-processing on adhesion strength was investigated by aging adhesive plaques in a range of seawater pH conditions. Plaques took 8-12 days to achieve full strength at pH 8, nearly doubling in adhesion strength (+94%) and increasing the work required to dislodge (+59%). Holding plaques in low pH conditions prevented strengthening, causing the material to tear more frequently under tension. The timescale of strengthening is consistent with the conversion of DOPA to DOPA-quinone, a pH dependent process that promotes cross-linking between adhesive proteins. The precise arrangement of DOPA containing proteins away from the adhesive-substratum interface emphasizes the role that structural organization can have on function, an insight that could lead to the design of better synthetic adhesives and metal-coordinating hydrogels.


Assuntos
Benzoquinonas/metabolismo , Di-Hidroxifenilalanina/análogos & derivados , Mytilus/metabolismo , Proteínas/metabolismo , Animais , Di-Hidroxifenilalanina/metabolismo , Mytilus/fisiologia , Água do Mar
10.
J Phycol ; 54(2): 153-158, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29288535

RESUMO

Early life stages of marine organisms are predicted to be vulnerable to ocean acidification. For macroalgae, reproduction and population persistence rely on spores to settle, adhere and continue the algal life cycle, yet the effect of ocean acidification on this critical life stage has been largely overlooked. We explicitly tested the biomechanical impact of reduced pH on early spore adhesion. We developed a shear flume to examine the effect of reduced pH on spore attachment time and strength in two intertidal rhodophyte macroalgae, one calcified (Corallina vancouveriensis) and one noncalcified (Polyostea robusta). Reduced pH delayed spore attachment of both species by 40%-52% and weakened attachment strength in C. vancouveriensis, causing spores to dislodge at lower flow-induced shear forces, but had no effect on the attachment strength of P. robusta. Results are consistent with our prediction that reduced pH disrupts proper curing and gel formation of spore adhesives (anionic polysaccharides and glycoproteins) via protonation and cation displacement, although experimental verification is needed. Our results demonstrate that ocean acidification negatively, and differentially, impacts spore adhesion in two macroalgae. If results hold in field conditions, reduced ocean pH has the potential to impact macroalgal communities via spore dysfunction, regardless of the physiological tolerance of mature thalli.


Assuntos
Rodófitas/fisiologia , Água do Mar/química , Alga Marinha/fisiologia , Organismos Aquáticos/fisiologia , Fenômenos Biomecânicos , Concentração de Íons de Hidrogênio , Esporos/fisiologia
11.
J Exp Biol ; 220(Pt 6): 984-994, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28153979

RESUMO

Several bivalve species produce byssus threads to provide attachment to substrates, with mechanical properties highly variable among species. Here, we examined the distal section of byssal threads produced by a range of bivalve species (Mytilus edulis, Mytilus trossulus, Mytilus galloprovincialis, Mytilus californianus, Pinna nobilis, Perna perna, Xenostrobus securis, Brachidontes solisianus and Isognomon bicolor) collected from different nearshore environments. Morphological and mechanical properties were measured, and biochemical analyses were performed. Multivariate redundancy analyses on mechanical properties revealed that byssal threads of M. californianus, M. galloprovincialis and P. nobilis have very distinct mechanical behaviours compared with the remaining species. Extensibility, strength and force were the main variables separating these species groups, which were highest for M. californianus and lowest for P. nobilis Furthermore, the analysis of the amino acid composition revealed that I. bicolor and P. nobilis threads are significantly different from the other species, suggesting a different underlying structural strategy. Determination of metal contents showed that the individual concentration of inorganic elements varies, but that the dominant elements are conserved between species. Altogether, this bivalve species comparison suggests some molecular bases for the biomechanical characteristics of byssal fibres that may reflect phylogenetic limitations.


Assuntos
Aminoácidos/análise , Bivalves/química , Bivalves/ultraestrutura , Metais/análise , Animais , Fenômenos Biomecânicos , Bivalves/anatomia & histologia , Especificidade da Espécie
12.
Sci Data ; 3: 160087, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27727238

RESUMO

At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on 'habitat-level' measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.


Assuntos
Bivalves/fisiologia , Temperatura Corporal , Animais , Mudança Climática , Ecossistema
13.
J Therm Biol ; 54: 37-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26615725

RESUMO

Organisms employ a wide array of physiological and behavioral responses in an effort to endure stressful environmental conditions. For many marine invertebrates, physiological and/or behavioral performance is dependent on physical conditions in the fluid environment. Although factors such as water temperature and velocity can elicit changes in respiration and feeding, the manner in which these processes integrate to shape growth remains unclear. In a growth experiment, juvenile barnacles (Balanus glandula) were raised in dockside, once-through flow chambers at water velocities of 2 versus 19 cm s(-1) and temperatures of 11.5 versus 14 °C. Over 37 days, growth rates (i.e., shell basal area) increased with faster water velocities and higher temperatures. Barnacles at high flows had shorter feeding appendages (i.e., cirri), suggesting that growth patterns are unlikely related to plastic responses in cirral length. A separate experiment in the field confirmed patterns of temperature- and flow-dependent growth over 41 days. Outplanted juvenile barnacles exposed to the faster water velocities (32±1 and 34±1 cm s(-1); mean±SE) and warm temperatures (16.81±0.05 °C) experienced higher growth compared to individuals at low velocities (1±1 cm s(-1)) and temperatures (13.67±0.02 °C). Growth data were consistent with estimates from a simple energy budget model based on previously measured feeding and respiration response curves that predicted peak growth at moderate temperatures (15 °C) and velocities (20-30 cm s(-1)). Low growth is expected at both low and high velocities due to lower encounter rates with suspended food particles and lower capture efficiencies respectively. At high temperatures, growth is likely limited by high metabolic costs, whereas slow growth at low temperatures may be a consequence of low oxygen availability and/or slow cirral beating and low feeding rates. Moreover, these results advocate for approaches that consider the combined effects of multiple stressors and suggest that both increases and decreases in temperature or flow impact barnacle growth, but through different physiological and behavioral mechanisms.


Assuntos
Modelos Biológicos , Thoracica/crescimento & desenvolvimento , Animais , Meio Ambiente , Estresse Fisiológico , Temperatura , Água , Movimentos da Água
14.
Am J Bot ; 102(11): 1938-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26546127

RESUMO

PREMISE OF THE STUDY: Morphology and material properties are the main components of the mechanical design of organisms, with species groups developing different optimization strategies in the context of their physical environment. For intertidal and subtidal seaweeds, possessing highly flexible and extensible tissues allows individuals to bend and reconfigure in flow, thereby reducing drag. Previous research has shown that aging may compromise these qualities. Tissue age increases with distance from the blade's meristem, which differs in its position on kelps and red algae. Here, we assess whether longitudinal patterns of blade material properties differ between these two algal groups according to tissue age. METHODS: We performed tensile tests on tissues samples excised from various positions along the extent of blades in nine kelp species (basal growth) and 15 species of red algae (apical growth). KEY RESULTS: We found that older tissues were less flexible and extensible than younger tissues in all species tested. As predicted, tissue near the basal meristem in kelp was more flexible and extensible than older tissue at the blade's distal end. The opposite pattern was observed for red algae, with the most flexible and extensible tissues found near the apical meristem at the distal ends of blades. CONCLUSIONS: We propose that divergent patterns in the distribution of material properties along blades may have different consequences for the performance of kelps and red algae. The positioning of younger tissues at the blade base for kelps may enable these species to attain larger body sizes in wave-swept habitats.


Assuntos
Kelp/crescimento & desenvolvimento , Rodófitas/crescimento & desenvolvimento , Fenômenos Biomecânicos
15.
Biol Lett ; 11(9): 20141075, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26562936

RESUMO

Ocean acidification lowers the saturation state of calcium carbonate, decreasing net calcification and compromising the skeletons of organisms such as corals, molluscs and algae. These calcified structures can protect organisms from predation and improve access to light, nutrients and dispersive currents. While some species (such as urchins, corals and mussels) survive with decreased calcification, they can suffer from inferior mechanical performance. Here, we used cantilever beam theory to test the hypothesis that decreased calcification would impair the mechanical performance of the green alga Acetabularia acetabulum along a CO2 gradient created by volcanic seeps off Vulcano, Italy. Calcification and mechanical properties declined as calcium carbonate saturation fell; algae at 2283 µatm CO2 were 32% less calcified, 40% less stiff and 40% droopier. Moreover, calcification was not a linear proxy for mechanical performance; stem stiffness decreased exponentially with reduced calcification. Although calcifying organisms can tolerate high CO2 conditions, even subtle changes in calcification can cause dramatic changes in skeletal performance, which may in turn affect key biotic and abiotic interactions.


Assuntos
Acetabularia/fisiologia , Dióxido de Carbono/química , Água do Mar/química , Fenômenos Biomecânicos , Calcificação Fisiológica , Carbonato de Cálcio/análise , Itália , Mar Mediterrâneo , Erupções Vulcânicas
16.
Ann Rev Mar Sci ; 7: 443-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25195867

RESUMO

Mussels form dense aggregations that dominate temperate rocky shores, and they are key aquaculture species worldwide. Coastal environments are dynamic across a broad range of spatial and temporal scales, and their changing abiotic conditions affect mussel populations in a variety of ways, including altering their investments in structures, physiological processes, growth, and reproduction. Here, we describe four categories of ecomechanical models (biochemical, mechanical, energetic, and population) that we have developed to describe specific aspects of mussel biology, ranging from byssal attachment to energetics, population growth, and fitness. This review highlights how recent advances in these mechanistic models now allow us to link them together across molecular, material, organismal, and population scales of organization. This integrated ecomechanical approach provides explicit and sometimes novel predictions about how natural and farmed mussel populations will fare in changing climatic conditions.


Assuntos
Bivalves , Ecossistema , Biologia Marinha/métodos , Modelos Teóricos , Animais , Aquicultura , Fenômenos Biomecânicos , Bivalves/anatomia & histologia , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Tamanho Corporal , Mudança Climática , Oceanos e Mares , Densidade Demográfica , Reprodução
17.
Environ Sci Technol ; 48(17): 9982-94, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25084232

RESUMO

The threat that ocean acidification (OA) poses to marine ecosystems is now recognized and U.S. funding agencies have designated specific funding for the study of OA. We present a research framework for studying OA that describes it as a biogeochemical event that impacts individual species and ecosystems in potentially unexpected ways. We draw upon specific lessons learned about ecosystem responses from research on acid rain, carbon dioxide enrichment in terrestrial plant communities, and nitrogen deposition. We further characterize the links between carbon chemistry changes and effects on individuals and ecosystems, and enumerate key hypotheses for testing. Finally, we quantify how U.S. research funding has been distributed among these linkages, concluding that there is an urgent need for research programs designed to anticipate how the effects of OA will reverberate throughout assemblages of species.


Assuntos
Ácidos/química , Oceanos e Mares , Pesquisa , Ciclo do Carbono , Ecossistema , Estados Unidos
18.
J Exp Biol ; 217(Pt 12): 2101-9, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24625651

RESUMO

In aquatic systems, physiological processes such as respiration, photosynthesis and calcification are potentially limited by the exchange of dissolved materials between organisms and their environment. The nature and extent of physiological limitation is, therefore, likely to be dependent on environmental conditions. Here, we assessed the metabolic sensitivity of barnacles under a range of water temperatures and velocities, two factors that influence their distribution. Respiration rates increased in response to changes in temperature and flow, with an interaction where flow had less influence on respiration at low temperatures, and a much larger effect at high temperatures. Model analysis suggested that respiration is mass transfer limited under conditions of low velocity (<7.5 cm (-1)) and high temperature (20-25°C). In contrast, limitation by uptake reaction kinetics, when the biotic capacity of barnacles to absorb and process oxygen is slower than its physical delivery by mass transport, prevailed at high flows (40-150 cm s(-1)) and low temperatures (5-15°C). Moreover, there are intermediate flow-temperature conditions where both mass transfer and kinetic limitation are important. Behavioral monitoring revealed that barnacles fully extend their cirral appendages at low flows and display abbreviated 'testing' behaviors at high flows, suggesting some form of mechanical limitation. In low flow-high temperature treatments, however, barnacles displayed distinct 'pumping' behaviors that may serve to increase ventilation. Our results suggest that in slow-moving waters, respiration may become mass transfer limited as temperatures rise, whereas faster flows may serve to ameliorate the effects of elevated temperatures. Moreover, these results underscore the necessity for approaches that evaluate the combined effects of multiple environmental factors when examining physiological and behavioral performance.


Assuntos
Consumo de Oxigênio , Oxigênio/metabolismo , Temperatura , Thoracica/fisiologia , Movimentos da Água , Animais , Respiração
19.
Nature ; 503(7476): 345-6, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24256799
20.
J Phycol ; 47(6): 1360-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27020360

RESUMO

Over the last two decades, many studies on functional morphology have suggested that material properties of seaweed tissues may influence their fitness. Because hydrodynamic forces are likely the largest source of mortality for seaweeds in high wave energy environments, tissues with material properties that behave favorably in these environments are likely to be selected for. However, it is very difficult to disentangle the effects of materials properties on seaweed performance because size, shape, and habitat also influence mechanical and hydrodynamic performance. In this study, anatomical and material properties of 16 species of foliose red macroalgae were determined, and their effects on hydrodynamic performance were measured in laboratory experiments holding size and shape constant. We determined that increased blade thickness (primarily caused by the addition of medullary tissue) results in higher flexural stiffness (EI), which inhibits the seaweed's ability to reconfigure in flowing water and thereby increases drag. However, this increase is concurrent with an increase in the force required to break tissue, possibly offsetting any risk of failure. Additionally, while increased nonpigmented medullary cells may pose a higher metabolic cost to the seaweed, decreased reconfiguration causes thicker tissues to expose more photosynthetic surface area incident to ambient light in flowing water, potentially ameliorating the metabolic cost of producing these cells. Material properties can result in differential performance of morphologically similar species. Future studies on ecomechanics of seaweeds in wave-swept coastal habitats should consider the interaction of multiple trade-offs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...