Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 222(0): 201-216, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32108841

RESUMO

In this work, we explore the effect of ligand binding groups on the visible and NIR photoluminescent properties within phosphorus-boron co-doped silicon nanocrystals (PB:Si NCs) by exploiting both the X-type (covalent) and L-type (Lewis donor molecule) bonding interactions. We find that the cooperative nature of both X- and L-type bonding from alkoxide/alcohol, alkylamide/alkylamine, and alkylthiolate/alkylthiol on PB:Si NCs results in photoluminescence (PL) energy blue shifts from the as-synthesized, hydride-terminated NCs (PB:Si-H) in excess of 0.4 eV, depending on the surface termination. These PL blue shifts appear greatest in the most strongly confined samples with diameters <4 nm where the surface-to-volume ratio is high and, therefore, the ligand effects are most pronounced. A correlation between the donor group strength (either X-type or L-type) and the degree of D-A state modulation is found, and the proportion of the PL blue shift from the X- and L-type interactions is quantified. Raman spectroscopy is used to provide additional evidence of the strength of the L-type donor groups. Additionally, we probe how the nature of the ligand chemistry affects the radiative lifetime and PL efficiency and find that the ligands do not significantly change the D-A emission dynamics, and all samples retain the long 50-130 µs lifetimes characteristic of these transitions. Finally, we describe three mechanisms that operate to affect the D-A recombination energies: (1) X-type ligands that modulate the PB:Si-X NC wavefunction; (2) L-type ligands that perturb the donor and acceptor states via a molecular orbital theory picture; and (3) X- and L-type ligands that cause a dielectric increase around the PB:Si NC core, which provides Coulomb screening and modulates the donor and acceptor states even further.

2.
Nat Chem ; 12(1): 63-70, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31767991

RESUMO

Singlet fission promises to surpass the Shockley-Queisser limit for single-junction solar cell efficiency through the production of two electron-hole pairs per incident photon. However, this promise has not been fulfilled because singlet fission produces two low-energy triplet excitons that have been unexpectedly difficult to dissociate into free charges. To understand this phenomenon, we study charge separation from triplet excitons in polycrystalline pentacene using an electrochemical series of 12 different guest electron-acceptor molecules with varied reduction potentials. We observe separate optima in the charge yield as a function of driving force for singlet and triplet excitons, including inverted regimes for the dissociation of both states. Molecular acceptors can thus provide a strategic advantage to singlet fission solar cells by suppressing singlet dissociation at optimal driving forces for triplet dissociation. However, even at the optimal driving force, the rate constant for charge transfer from the triplet state is surprisingly small, ~107 s-1, presenting a previously unidentified obstacle to the design of efficient singlet fission solar cells.

3.
ACS Nano ; 13(2): 939-953, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30648854

RESUMO

Infrared technologies provide tremendous value to our modern-day society. The need for easy-to-fabricate, solution-processable, tunable infrared active optoelectronic materials has driven the development of infrared colloidal quantum dots, whose band gaps can readily be tuned by dimensional constraints due to the quantum confinement effect. In this Perspective, we summarize recent progress in the development of infrared quantum dots both as infrared light emitters ( e.g., in light-emitting diodes, biological imaging, etc.) as well as infrared absorbers ( e.g., in photovoltaics, solar fuels, photon up-conversion, etc.), focusing on how fundamental breakthroughs in synthesis, surface chemistry, and characterization techniques are facilitating the implementation of these nanostructures into exploratory device architectures as well as in emerging applications. We discuss the ongoing challenges and opportunities associated with infrared colloidal quantum dots.

4.
J Am Chem Soc ; 140(42): 13753-13763, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30255707

RESUMO

We developed a postsynthetic treatment to produce impurity n-type doped PbSe QDs with In3+ as the substitutional dopant. Increasing the incorporated In content is accompanied by a gradual bleaching of the interband first-exciton transition and concurrently the appearance of a size-dependent, intraband absorption, suggesting the controlled introduction of delocalized electrons into the QD band edge states under equilibrium conditions. We compare the optical properties of our In-doped PbSe QDs to cobaltocene treated QDs, where the n-type dopant arises from remote reduction of the PbSe QDs and observe similar behavior. Spectroelectrochemical measurements also demonstrate characteristic n-type signatures, including both an induced absorption within the electrochemical bandgap and a shift of the Fermi-level toward the conduction band. Finally, we demonstrate that the In3+ dopants can be reversibly removed from the PbSe QDs, whereupon the first exciton bleach is recovered. Our results demonstrate that PbSe QDs can be controllably n-type doped via impurity aliovalent substitutional doping.

5.
Nano Lett ; 18(5): 3118-3124, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29659285

RESUMO

The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups-alkyls, amides, and alkoxides-on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands-not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals-are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

6.
Nano Lett ; 18(2): 865-873, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29364676

RESUMO

We have prepared a series of samples with the ligand 6,13-bistri(iso-propyl)silylethynyl tetracene 2-carboxylic acid (TIPS-Tc-COOH) attached to PbS quantum dot (QD) samples of three different sizes in order to monitor and control the extent and time scales of energy flow after photoexcitation. Fast energy transfer (∼1 ps) to the PbS QD occurs upon direct excitation of the ligand for all samples. The largest size QD maintains the microsecond exciton lifetime characteristic of the as-prepared oleate terminated PbS QDs. However, two smaller QD sizes with lowest exciton energies similar to or larger than the TIPS-Tc-COO- triplet energy undergo energy transfer between QD core and ligand triplet on nanosecond to microsecond timescales. For the intermediate size QDs in particular, energy can be recycled many times between ligand and core, but the triplet remains the dominant excited species at long times, living for ∼3 µs for fully exchanged QDs and up to 30 µs for partial ligand exchange, which is revealed as a method for controlling the triplet lifetime. A unique upconverted luminescence spectrum is observed that results from annihilation of triplets after exclusive excitation of the QD core.

7.
Chem Mater ; 29(8): 3754-3762, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28989233

RESUMO

The trapping dynamics of conduction-band electrons in colloidal degenerately doped n-CdSe nanocrystals prepared by photochemical reduction (photodoping) were measured by direct optical methods. The nanocrystals show spontaneous electron trapping with distributed kinetics that extend to remarkably long timescales. Shifts in nanocrystal band-edge potentials caused by quantum confinement and surface ion stoichiometry were also measured by spectroelectrochemical techniques, and their relationship to the slow electron trapping is discussed. The very long electron-trapping timescales observed in these measurements are more consistent with atomic rearrangement than with fundamental electron-transfer processes. Such slow and broadly distributed electron-trapping dynamics are reminiscent of the well-known distributed dynamics of nanocrystal photoluminescence blinking, and potential relationships between the two phenomena are discussed.

8.
J Phys Chem Lett ; 8(21): 5253-5258, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28981282

RESUMO

We present an impedance technique based on light intensity-modulated high-frequency resistivity (IMHFR) that provides a new way to elucidate both the thermodynamics and kinetics in complex semiconductor photoelectrodes. We apply IMHFR to probe electrode interfacial energetics on oxide-modified semiconductor surfaces frequently used to improve the stability and efficiency of photoelectrochemical water splitting systems. Combined with current density-voltage measurements, the technique quantifies the overpotential for proton reduction relative to its thermodynamic potential in Si photocathodes coated with three oxides (SiOx, TiO2, and Al2O3) and a Pt catalyst. In pH 7 electrolyte, the flatband potentials of TiO2- and Al2O3-coated Si electrodes are negative relative to samples with native SiOx, indicating that SiOx is a better protective layer against oxidative electrochemical corrosion than ALD-deposited crystalline TiO2 or Al2O3. Adding a Pt catalyst to SiOx/Si minimizes proton reduction overpotential losses but at the expense of a reduction in available energy characterized by a more negative flatband potential relative to catalyst-free SiOx/Si.

9.
J Am Chem Soc ; 138(13): 4310-3, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26978480

RESUMO

A potentiometric method for measuring redox potentials of colloidal semiconductor nanocrystals (NCs) is described. Fermi levels of colloidal ZnO NCs are measured in situ during photodoping, allowing correlation of NC redox potentials and reduction levels. Excellent agreement is found between electrochemical and optical redox-indicator methods. Potentiometry is also reported for colloidal CdSe NCs, which show more negative conduction-band-edge potentials than in ZnO. This difference is highlighted by spontaneous electron transfer from reduced CdSe NCs to ZnO NCs in solution, with potentiometry providing a measure of the inter-NC electron-transfer driving force. Future applications of NC potentiometry are briefly discussed.


Assuntos
Pontos Quânticos , Compostos de Cádmio/química , Transporte de Elétrons , Nanopartículas/química , Nanoestruturas/química , Oxirredução , Potenciometria , Compostos de Selênio/química , Semicondutores , Óxido de Zinco/análise
10.
Adv Mater ; 28(8): 1616-22, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26679198

RESUMO

Hematite (α-Fe2 O3) is engineered to improve photoexcited electron-hole pair separation by synthesizing Fe2O3-Cr2O3 superlattices (SLs) with precise atomic control. The different surface terminations exhibited by Fe2O3 and Cr2O3 determine the hetero-junction interface structure and result in controllable, noncommutative band offset values. This controllable band alignment is harnessed to generate a built-in potential as large as 0.8 eV in Fe2 O3-Cr2O3 SLs.

11.
J Am Chem Soc ; 137(34): 11163-9, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26263400

RESUMO

Electronically doped colloidal semiconductor nanocrystals offer valuable opportunities to probe the new physical and chemical properties imparted by their excess charge carriers. Photodoping is a powerful approach to introducing and controlling free carrier densities within free-standing colloidal semiconductor nanocrystals. Photoreduced (n-type) colloidal ZnO nanocrystals possessing delocalized conduction-band (CB) electrons can be formed by photochemical oxidation of EtOH. Previous studies of this chemistry have demonstrated photochemical electron accumulation, in some cases reaching as many as >100 electrons per ZnO nanocrystal, but in every case examined to date this chemistry maximizes at a well-defined average electron density of ⟨Nmax⟩ ≈ (1.4 ± 0.4) × 10(20) cm(-3). The origins of this maximum have never been identified. Here, we use a solvated redox indicator for in situ determination of reduced ZnO nanocrystal redox potentials. The Fermi levels of various photodoped ZnO nanocrystals possessing on average just one excess CB electron show quantum-confinement effects, as expected, but are >600 meV lower than those of the same ZnO nanocrystals reduced chemically using Cp*2Co, reflecting important differences between their charge-compensating cations. Upon photochemical electron accumulation, the Fermi levels become independent of nanocrystal volume at ⟨N⟩ above ∼2 × 10(19) cm(-3), and maximize at ⟨Nmax⟩ ≈ (1.6 ± 0.3) × 10(20) cm(-3). This maximum is proposed to arise from Fermi-level pinning by the two-electron/two-proton hydrogenation of acetaldehyde, which reverses the EtOH photooxidation reaction.


Assuntos
Aldeídos/química , Nanoestruturas/química , Óxido de Zinco/química , Coloides/química , Elétrons , Etanol/química , Hidrogenação , Oxirredução , Processos Fotoquímicos , Semicondutores
12.
Acc Chem Res ; 48(7): 1929-37, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26121552

RESUMO

Electronic doping is one of the most important experimental capabilities in all of semiconductor research and technology. Through electronic doping, insulating materials can be made conductive, opening doors to the formation of p-n junctions and other workhorses of modern semiconductor electronics. Recent interest in exploiting the unique physical and photophysical properties of colloidal semiconductor nanocrystals for revolutionary new device technologies has stimulated efforts to prepare electronically doped colloidal semiconductor nanocrystals with the same control as available in the corresponding bulk materials. Despite the impact that success in this endeavor would have, the development of general and reliable methods for electronic doping of colloidal semiconductor nanocrystals remains a long-standing challenge. In this Account, we review recent progress in the development and characterization of electronically doped colloidal semiconductor nanocrystals. Several successful methods for introducing excess band-like charge carriers are illustrated and discussed, including photodoping, outer-sphere electron transfer, defect doping, and electrochemical oxidation or reduction. A distinction is made between methods that yield excess band-like carriers at thermal equilibrium and those that inject excess charge carriers under thermal nonequilibrium conditions (steady state). Spectroscopic signatures of such excess carriers, accessible by both equilibrium and nonequilibrium methods, are reviewed and illustrated. A distinction is also proposed between the phenomena of electronic doping and redox-potential shifting. Electronically doped semiconductor nanocrystals possess excess band-like charge carriers at thermal equilibrium, whereas redox-potential shifting affects the potentials at which charge carriers are injected under nonequilibrium conditions, without necessarily introducing band-like charge carriers at equilibrium. Detection of the key spectroscopic signatures of band-like carriers allows distinction between these two regimes. Both electronic doping and redox-potential shifting can be powerful tools for tuning the performance of nanocrystals in electronic devices. Finally, key chemical challenges associated with nanocrystal electronic doping are briefly discussed. These challenges are centered largely on the availability of charge-carrier reservoirs with suitable redox potentials and on the relatively poor control over nanocrystal surface traps. In most cases, the Fermi levels of colloidal nanocrystals are defined by the redox properties of their surface traps. Control over nanocrystal surface chemistries is therefore essential to the development of general and reliable strategies for electronically doping colloidal semiconductor nanocrystals. Overall, recent progress in this area portends exciting future advances in controlling nanocrystal compositions, surface chemistries, redox potentials, and charge states to yield new classes of electronic nanomaterials with attractive physical properties and the potential to stimulate unprecedented new semiconductor technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...