Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 75(1): 123-139, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28702706

RESUMO

In this work, we analyzed the community structure and metabolic potential of sediment microbial communities in high-latitude coastal environments subjected to low to moderate levels of chronic pollution. Subtidal sediments from four low-energy inlets located in polar and subpolar regions from both Hemispheres were analyzed using large-scale 16S rRNA gene and metagenomic sequencing. Communities showed high diversity (Shannon's index 6.8 to 10.2), with distinct phylogenetic structures (<40% shared taxa at the Phylum level among regions) but similar metabolic potential in terms of sequences assigned to KOs. Environmental factors (mainly salinity, temperature, and in less extent organic pollution) were drivers of both phylogenetic and functional traits. Bacterial taxa correlating with hydrocarbon pollution included families of anaerobic or facultative anaerobic lifestyle, such as Desulfuromonadaceae, Geobacteraceae, and Rhodocyclaceae. In accordance, biomarker genes for anaerobic hydrocarbon degradation (bamA, ebdA, bcrA, and bssA) were prevalent, only outnumbered by alkB, and their sequences were taxonomically binned to the same bacterial groups. BssA-assigned metagenomic sequences showed an extremely wide diversity distributed all along the phylogeny known for this gene, including bssA sensu stricto, nmsA, assA, and other clusters from poorly or not yet described variants. This work increases our understanding of microbial community patterns in cold coastal sediments, and highlights the relevance of anaerobic hydrocarbon degradation processes in subtidal environments.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Hidrocarbonetos/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Clima Frio , DNA Bacteriano/genética , Metagenômica , Microbiota , Filogenia , RNA Ribossômico 16S/genética
2.
Mar Drugs ; 15(4)2017 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-28397770

RESUMO

The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.


Assuntos
Metagenoma/genética , Oxigenases de Função Mista/genética , Sequência de Aminoácidos , Bactérias/genética , Biocatálise , Biotecnologia/métodos , Temperatura Baixa , Sistema Enzimático do Citocromo P-450/genética , Cinética , Oxirredução , Filogenia , Alinhamento de Sequência , Especificidade por Substrato/genética
3.
FEMS Microbiol Ecol ; 93(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815287

RESUMO

Rhodopsins are broadly distributed. In this work, we analyzed 23 metagenomes corresponding to marine sediment samples from four regions that share cold climate conditions (Norway; Sweden; Argentina and Antarctica). In order to investigate the genes evolution of viral rhodopsins, an initial set of 6224 bacterial rhodopsin sequences according to COG5524 were retrieved from the 23 metagenomes. After selection by the presence of transmembrane domains and alignment, 123 viral (51) and non-viral (72) sequences (>50 amino acids) were finally included in further analysis. Viral rhodopsin genes were homologs of Phaeocystis globosa virus and Organic lake Phycodnavirus. Non-viral microbial rhodopsin genes were ascribed to Bacteroidetes, Planctomycetes, Firmicutes, Actinobacteria, Cyanobacteria, Proteobacteria, Deinococcus-Thermus and Cryptophyta and Fungi. A rescreening using Blastp, using as queries the viral sequences previously described, retrieved 30 sequences (>100 amino acids). Phylogeographic analysis revealed a geographical clustering of the sequences affiliated to the viral group. This clustering was not observed for the microbial non-viral sequences. The phylogenetic reconstruction allowed us to propose the existence of a putative ancestor of viral rhodopsin genes related to Actinobacteria and Chloroflexi. This is the first report about the existence of a phylogeographic association of the viral rhodopsin sequences from marine sediments.


Assuntos
Bactérias/genética , Fungos/genética , Sedimentos Geológicos/microbiologia , Phycodnaviridae/genética , Água do Mar/microbiologia , Proteínas Virais/genética , Regiões Antárticas , Argentina , Bactérias/classificação , Evolução Molecular , Fungos/classificação , Sedimentos Geológicos/virologia , Metagenoma , Noruega , Phycodnaviridae/classificação , Filogenia , Rodopsina/genética , Água do Mar/virologia , Suécia
4.
Environ Microbiol ; 18(12): 4471-4484, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27348213

RESUMO

Alginates are abundant polysaccharides in brown algae that constitute an important energy source for marine heterotrophic bacteria. Despite the key role of alginate degradation processes in the marine carbon cycle, little information is available on the bacterial populations involved in these processes. The aim of this work was to gain a better understanding of alginate utilization capabilities in cold coastal environments. Sediment metagenomes from four high-latitude regions of both Hemispheres were interrogated for alginate lyase gene homologue sequences and their genomic context. Sediments contained highly abundant and diverse bacterial assemblages with alginolytic potential, including members of Bacteroidetes and Proteobacteria, as well as several poorly characterized taxa. The microbial communities in Arctic and Antarctic sediments exhibited the most similar alginolytic profiles, whereas brackish sediments showed distinct structures with a higher proportion of novel genes. Examination of the gene neighbourhood of the alginate lyase homologues revealed distinct patterns depending on the potential lineage of the scaffolds, with evidence of evolutionary relationships among alginolytic gene clusters from Bacteroidetes and Proteobacteria. This information is relevant for understanding carbon fluxes in cold coastal environments and provides valuable information for the development of biotechnological applications from brown algae biomass.


Assuntos
Alginatos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Metagenômica , Regiões Antárticas , Regiões Árticas , Ecossistema , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Metagenoma , Polissacarídeo-Liases , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA