Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Transplant ; 30: 9636897211003022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34013781

RESUMO

When considering the development pathway for a genetically modified cell therapy product, it is critically important that the product is engineered consistent with its intended human use. For scientists looking to develop and commercialize a new technology, the decision to select a genetic modification method depends on several practical considerations. Whichever path is chosen, the developer must understand the key risks and potential mitigations of the cell engineering approach. The developer should also understand the clinical implications: permanent/memory establishment versus transient expression, and clinical manufacturing considerations when dealing with transplantation of genetically engineered cells. This review covers important topics for mapping out a strategy for developers of new cell-based therapeutics. Biological, technological, manufacturing, and clinical considerations are all presented to map out development lanes for the initiation and risk management of new gene-based cell therapeutic products for human use.


Assuntos
Engenharia Celular/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Humanos
2.
Cancer Biol Ther ; 7(12): 2047-53, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19106634

RESUMO

Activation of the PI3K/Akt pathway is associated with tumorigenesis and resistance to apoptosis and ionizing radiation (IR). We sought to characterize the effects of physiologic and genetic manipulation of Akt signaling on IR-induced gastrointestinal (GI) apoptosis in mice. PI3K/Akt signaling is stimulated by insulin. We evaluated the time course of Akt stimulation by insulin and found it overlapped with protection from apoptosis induced by TRAIL (TNFalpha Related Apoptosis Inducing Ligand) in cell lines. Mice were treated with insulin and glucose and the kinetics of in vivo Akt stimulation were determined by phospho-Akt (S473) (P-Akt) immunofluorescence in the gut. Irradiation of mice by five Gy at 30 minutes after insulin/glucose administration induced apoptosis in the crypts of the ileum and colon after six hours, but induced little apoptosis in the liver or esophagus. Pre-treatment with insulin and glucose did not significantly alter levels of IR-induced apoptosis in the gut. IR alone led to sustained increases in P-Akt in the gut at six hours, a protective response that may have precluded additional protection from insulin/glucose. In Akt1-/- mice, there was significantly more apoptosis in ileum crypts of irradiated mice compared to Akt1+/+ mice, suggesting a role for the pathway in the GI tract in response to IR. Taken together, modulation of the PI3K/Akt pathway may sensitize or protect against cancer therapies in both tumor and normal tissues.


Assuntos
Apoptose/fisiologia , Neoplasias Gastrointestinais/patologia , Células HCT116/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Células HCT116/citologia , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/efeitos da radiação , Transdução de Sinais
3.
RNA ; 13(3): 361-73, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17237360

RESUMO

Yeast RNA-binding proteins Nrd1 and Nab3 direct transcription termination of sn/snoRNA transcripts, some mRNA transcripts, and a class of intergenic and anti-sense transcripts. Recognition of Nrd1- and Nab3-binding sites is a critical first step in the termination and subsequent processing or degradation of these transcripts. In this article, we describe the purification and characterization of an Nrd1-Nab3 heterodimer. This Nrd1-Nab3 complex binds specifically to RNA sequences derived from a snoRNA terminator. The relative binding to mutant terminators correlates with the in vivo termination efficiency of these mutations, indicating that the primary specificity determinant in nonpoly(A) termination is Nrd1-Nab3 binding. In addition, several snoRNA terminators contain multiple Nrd1- and Nab3-binding sites and we show that multiple heterodimers bind cooperatively to one of these terminators in vitro.


Assuntos
Proteínas Fúngicas/química , Proteínas de Ligação a RNA/química , RNA/química , Ribonucleoproteínas/química , Regiões Terminadoras Genéticas , Sequência de Bases , Dimerização , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Dados de Sequência Molecular , RNA/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Ribonucleoproteínas/genética , Ribonucleoproteínas/isolamento & purificação
4.
Mol Cell ; 23(6): 841-51, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16973436

RESUMO

Studies of yeast transcription have revealed the widespread distribution of intergenic RNA polymerase II transcripts. These cryptic unstable transcripts (CUTs) are rapidly degraded by the nuclear exosome. Yeast RNA binding proteins Nrd1 and Nab3 direct termination of sn/snoRNAs and recently have also been implicated in premature transcription termination of the NRD1 gene. In this paper, we show that Nrd1 and Nab3 are required for transcription termination of CUTs. In nrd1 and nab3 mutants, we observe 3'-extended transcripts originating from CUT promoters but failing to terminate through the Nrd1- and Nab3-directed pathway. Nrd1 and Nab3 colocalize to regions of the genome expressing antisense CUTs, and these transcripts require yeast nuclear exosome and TRAMP components for degradation. Dissection of a CUT terminator reveals a minimal element sufficient for Nrd1- and Nab3-directed termination. These results suggest that transcription termination of CUTs directed by Nrd1 and Nab3 is a prerequisite for rapid degradation by the nuclear exosome.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/fisiologia , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteínas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Transcrição Gênica/fisiologia , Exonucleases/metabolismo , Exonucleases/fisiologia , Mutação , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Poliadenilação , Estabilidade de RNA , RNA Antissenso/metabolismo , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/análise , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell ; 21(5): 641-51, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16507362

RESUMO

The yeast RNA binding proteins Nrd1 and Nab3 are required for termination of nonpolyadenylated transcripts from RNA polymerase (Pol) II-transcribed snRNA and snoRNA genes. In this paper, we show that NRD1 expression is regulated by Nrd1- and Nab3-directed premature termination. Sequences recognized by these proteins are present in NRD1 mRNA and are required for regulated expression. Chromatin immunoprecipitation and transcription run-on experiments show that, in wild-type cells, Pol II occupancy is high at the 5' end of the NRD1 gene and decreases at the 3' end. Mutation of Nrd1 and Nab3 binding sites within the NRD1 mRNA leads to a relative increase in Pol II occupancy of downstream sequences. We further show that NRD1 autoregulation involves components of the exosome and a newly discovered exosome-activating complex. Together, these results show that NRD1 is a eukaryotic cellular gene regulated through premature transcription termination.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Regiões Terminadoras Genéticas/fisiologia , Transcrição Gênica/fisiologia , Regiões 5' não Traduzidas/metabolismo , Núcleo Celular/fisiologia , Proteínas Nucleares/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Ribonucleoproteínas/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/fisiologia
6.
Mol Cell Biol ; 24(14): 6241-52, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15226427

RESUMO

RNA polymerase II (Pol II) termination is triggered by sequences present in the nascent transcript. Termination of pre-mRNA transcription is coupled to recognition of cis-acting sequences that direct cleavage and polyadenylation of the pre-mRNA. Termination of nonpolyadenylated [non-poly(A)] Pol II transcripts in Saccharomyces cerevisiae requires the RNA-binding proteins Nrd1 and Nab3. We have used a mutational strategy to characterize non-poly(A) termination elements downstream of the SNR13 and SNR47 snoRNA genes. This approach detected two common RNA sequence motifs, GUA[AG] and UCUU. The first motif corresponds to the known Nrd1-binding site, which we have verified here by gel mobility shift assays. We also show that Nab3 protein binds specifically to RNA containing the UCUU motif. Taken together, our data suggest that Nrd1 and Nab3 binding sites play a significant role in defining non-poly(A) terminators. As is the case with poly(A) terminators, there is no strong consensus for non-poly(A) terminators, and the arrangement of Nrd1p and Nab3p binding sites varies considerably. In addition, the organization of these sequences is not strongly conserved among even closely related yeasts. This indicates a large degree of genetic variability. Despite this variability, we were able to use a computational model to show that the binding sites for Nrd1 and Nab3 can identify genes for which transcription termination is mediated by these proteins.


Assuntos
Regulação Fúngica da Expressão Gênica , Precursores de RNA/metabolismo , RNA Nucleolar Pequeno/genética , Saccharomyces cerevisiae/genética , Regiões Terminadoras Genéticas , Sequência de Bases , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poliadenilação , Ligação Proteica , RNA Polimerase II/metabolismo , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...