Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 17217, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748604

RESUMO

The bacterium Deinococcus radiodurans is highly resistant to several stress conditions, such as radiation. According to several reports, manganese plays a crucial role in stress protection, and a high Mn/Fe ratio is essential in this process. However, mobilization of manganese and iron, and the role of DNA-binding-proteins-under-starved-conditions during oxidative-stress remained open questions. We used synchrotron-based X-ray fluorescence imaging at nano-resolution to follow element-relocalization upon stress, and its dependency on the presence of Dps proteins, using dps knockout mutants. We show that manganese, calcium, and phosphorus are mobilized from rich-element regions that resemble electron-dense granules towards the cytosol and the cellular membrane, in a Dps-dependent way. Moreover, iron delocalizes from the septum region to the cytoplasm affecting cell division, specifically in the septum formation. These mechanisms are orchestrated by Dps1 and Dps2, which play a crucial role in metal homeostasis, and are associated with the D. radiodurans tolerance against reactive oxygen species.


Assuntos
Proteínas de Bactérias/metabolismo , Citoproteção/efeitos dos fármacos , Deinococcus/crescimento & desenvolvimento , Ferro/metabolismo , Manganês/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Proteínas de Bactérias/genética , Deinococcus/efeitos dos fármacos , Herbicidas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
2.
J Struct Biol ; 205(1): 91-102, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447285

RESUMO

Flavodiiron proteins (FDPs) play key roles in biological response mechanisms against oxygen and/or nitric oxide; in particular they are present in oxygenic phototrophs (including cyanobacteria and gymnosperms). Two conserved domains define the core of this family of proteins: a N-terminal metallo-ß-lactamase-like domain followed by a C-terminal flavodoxin-like one, containing the catalytic diiron centre and a FMN cofactor, respectively. Members of the FDP family may present extra modules in the C-terminus, and were classified into several classes according to their distribution and composition. The cyanobacterium Synechocystis sp. PCC6803 contains four Class C FDPs (Flv1-4) that include at the C-terminus an additional NAD(P)H:flavin oxidoreductase (FlR) domain. Two of them (Flv3 and Flv4) have the canonical diiron ligands (Class C, Type 1), while the other two (Flv1 and Flv2) present different residues in that region (Class C, Type 2). Most phototrophs, either Bacterial or Eukaryal, contain at least two FDP genes, each encoding for one of those two types. Crystals of the Flv1 two core domains (Flv1-ΔFlR), without the C-terminal NAD(P)H:flavin oxidoreductase extension, were obtained and the structure was determined. Its pseudo diiron site contains non-canonical basic and neutral residues, and showed anion moieties, instead. The presented structure revealed for the first time the structure of the two-domain core of a Class C-Type 2 FDP.


Assuntos
Proteínas de Bactérias/química , Ferroproteínas não Heme/química , Synechocystis/química , Ferro , Ligantes , Estrutura Molecular , Domínios Proteicos
3.
J Mol Biol ; 428(23): 4686-4707, 2016 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-27725182

RESUMO

Flavodiiron proteins (FDPs) are present in organisms from all domains of life and have been described so far to be involved in the detoxification of oxygen or nitric oxide (NO), acting as O2 and/or NO reductases. The Escherichia coli FDP, named flavorubredoxin (FlRd), is the most extensively studied FDP. Biochemical and in vivo studies revealed that FlRd is involved in NO detoxification as part of the bacterial defense mechanisms against reactive nitrogen species. E. coli FlRd has a clear preference for NO as a substrate in vitro, exhibiting a very low reactivity toward O2. To contribute to the understanding of the structural features defining this substrate selectivity, we determined the crystallographic structure of E. coli FlRd, both in the isolated and reduced states. The overall tetrameric structure revealed a highly conserved flavodiiron core domain, with a metallo-ß-lactamase-like domain containing a diiron center, and a flavodoxin domain with a flavin mononucleotide cofactor. The metal center in the oxidized state has a µ-hydroxo bridge coordinating the two irons, while in the reduced state, this moiety is not detected. Since only the flavodiiron domain was observed in these crystal structures, the structure of the rubredoxin domain was determined by NMR. Tunnels for the substrates were identified, and through molecular dynamics simulations, no differences for O2 or NO permeation were found. The present data represent the first structure for a NO-selective FDP.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Oxirredutases/química , Fatores de Transcrição/química , Cristalografia por Raios X , Proteínas de Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato , Fatores de Transcrição/metabolismo
4.
Nucleic Acids Res ; 43(20): 10039-54, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26424851

RESUMO

Latency-associated nuclear antigen (LANA) is central to episomal tethering, replication and transcriptional regulation of γ2-herpesviruses. LANA binds cooperatively to the terminal repeat (TR) region of the viral episome via adjacent LANA binding sites (LBS), but the molecular mechanism by which LANA assembles on the TR remains elusive. We show that KSHV LANA and MHV-68 LANA proteins bind LBS DNA using strikingly different modes. Solution structure of LANA complexes revealed that while kLANA tetramer is intrinsically bent both in the free and bound state to LBS1-2 DNA, mLANA oligomers instead adopt a rigid linear conformation. In addition, we report a novel non-ring kLANA structure that displays more flexibility at its assembly interface than previously demonstrated. We identified a hydrophobic pivot point located at the dimer-dimer assembly interface, which gives rotational freedom for kLANA to adopt variable conformations to accommodate both LBS1-2 and LBS2-1-3 DNA. Alterations in the arrangement of LBS within TR or at the tetramer assembly interface have a drastic effect on the ability of kLANA binding. We also show kLANA and mLANA DNA binding functions can be reciprocated. Although KSHV and MHV-68 are closely related, the findings provide new insights into how the structure, oligomerization, and DNA binding of LANA have evolved differently to assemble on the TR DNA.


Assuntos
Antígenos Virais/química , DNA Viral/química , Herpesvirus Humano 8 , Proteínas Nucleares/química , Rhadinovirus , Antígenos Virais/genética , Antígenos Virais/metabolismo , Sítios de Ligação , DNA Viral/metabolismo , Modelos Moleculares , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Sequências Repetidas Terminais , Termodinâmica
5.
J Biol Chem ; 290(47): 28084-28096, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26420481

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV) has a causative role in several human malignancies. KSHV latency-associated nuclear antigen (LANA) mediates persistence of viral episomes in latently infected cells. LANA mediates KSHV DNA replication and segregates episomes to progeny nuclei. The structure of the LANA DNA binding domain was recently solved, revealing a positive electrostatic patch opposite the DNA binding surface, which is the site of BET protein binding. Here we investigate the functional role of the positive patch in LANA-mediated episome persistence. As expected, LANA mutants with alanine or glutamate substitutions in the central, peripheral, or lateral portions of the positive patch maintained the ability to bind DNA by EMSA. However, all of the substitution mutants were deficient for LANA DNA replication and episome maintenance. Mutation of the peripheral region generated the largest deficiencies. Despite these deficiencies, all positive patch mutants concentrated to dots along mitotic chromosomes in cells containing episomes, similar to LANA. The central and peripheral mutants, but not the lateral mutants, were reduced for BET protein interaction as assessed by co-immunoprecipitation. However, defects in BET protein binding were independent of episome maintenance function. Overall, the reductions in episome maintenance closely correlated with DNA replication deficiencies, suggesting that the replication defects account for the reduced episome persistence. Therefore, the electrostatic patch exerts a key role in LANA-mediated DNA replication and episome persistence and may act through a host cell partner(s) other than a BET protein or by inducing specific structures or complexes.


Assuntos
Antígenos Virais/metabolismo , Replicação do DNA , Herpesvirus Humano 8/genética , Proteínas Nucleares/metabolismo , Plasmídeos/fisiologia , Latência Viral , Sítios de Ligação , Linhagem Celular Tumoral , Herpesvirus Humano 8/imunologia , Humanos , Eletricidade Estática , Sequências Repetidas Terminais
6.
Biochemistry ; 54(37): 5723-34, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26322858

RESUMO

Transglutaminases are best known for their ability to catalyze protein cross-linking reactions that impart chemical and physical resilience to cellular structures. Here, we report the crystal structure and characterization of Tgl, a transglutaminase from the bacterium Bacillus subtilis. Tgl is produced during sporulation and cross-links the surface of the highly resilient spore. Tgl-like proteins are found only in spore-forming bacteria of the Bacillus and Clostridia classes, indicating an ancient origin. Tgl is a single-domain protein, produced in active form, and the smallest transglutaminase characterized to date. We show that Tgl is structurally similar to bacterial cell wall endopeptidases and has an NlpC/P60 catalytic core, thought to represent the ancestral unit of the cysteine protease fold. We show that Tgl functions through a unique partially redundant catalytic dyad formed by Cys116 and Glu187 or Glu115. Strikingly, the catalytic Cys is insulated within a hydrophobic tunnel that traverses the molecule from side to side. The lack of similarity of Tgl to other transglutaminases together with its small size suggests that an NlpC/P60 catalytic core and insulation of the active site during catalysis may be essential requirements for protein cross-linking.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Transglutaminases/química , Proteínas de Bactérias/genética , Domínio Catalítico , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Dobramento de Proteína , Transglutaminases/genética
7.
FEBS J ; 281(18): 4138-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24975828

RESUMO

UNLABELLED: Deinococcus radiodurans is an aerobic organism with the ability to survive under conditions of high radiation doses or desiccation. As part of its protection system against oxidative stress, this bacterium encodes three monofunctional catalases. The DR1998 catalase belongs to clade 1, and is present at high levels under normal growth conditions. The crystals of DR1998 diffracted very weakly, and the merged diffraction data showed an R sym of 0.308. Its crystal structure was determined and refined to 2.6 Å. The four molecules present in the asymmetric unit form, by crystallographic symmetry, two homotetramers with 222 point-group symmetry. The overall structure of DR1998 is similar to that of other monofunctional catalases, showing higher structural homology with the catalase structures of clade 1. Each monomer shows the typical catalase fold, and contains one heme b in the active site. The heme is coordinated by the proximal ligand Tyr369, and on the heme distal side the essential His81 and Asn159 are hydrogen-bonded to a water molecule. A 25-Å-long channel is the main channel connecting the active site to the external surface. This channel starts with a hydrophobic region from the catalytic heme site, which is followed by a hydrophilic region that begins on Asp139 and expands up to the protein surface. Apart from this channel, an alternative channel, also near the heme active site, is presented and discussed. DATABASE: Coordinates and structure factors have been deposited in the Protein Data Bank in Europe under accession code 4CAB.


Assuntos
Proteínas de Bactérias/química , Catalase/química , Deinococcus/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Heme/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
8.
PLoS Pathog ; 9(10): e1003673, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146618

RESUMO

Latency-associated nuclear antigen (LANA) mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Šresolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s).


Assuntos
DNA Viral/química , Dobramento de Proteína , Rhadinovirus/química , Proteínas Virais/química , Latência Viral , DNA Viral/genética , DNA Viral/metabolismo , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Rhadinovirus/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Biochemistry ; 51(36): 7098-115, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22891681

RESUMO

NADP(+) dependent isocitrate dehydrogenase (IDH; EC 1.1.1.42) belongs to a large family of α-hydroxyacid oxidative ß-decarboxylases that catalyze similar three-step reactions, with dehydrogenation to an oxaloacid intermediate preceding ß-decarboxylation to an enol intermediate followed by tautomerization to the final α-ketone product. A comprehensive view of the induced fit needed for catalysis is revealed on comparing the first "fully closed" crystal structures of a pseudo-Michaelis complex of wild-type Escherichia coli IDH (EcoIDH) and the "fully closed" reaction product complex of the K100M mutant with previously obtained "quasi-closed" and "open" conformations. Conserved catalytic residues, binding the nicotinamide ring of NADP(+) and the metal-bound substrate, move as rigid bodies during domain closure by a hinge motion that spans the central ß-sheet in each monomer. Interactions established between Thr105 and Ser113, which flank the "phosphorylation loop", and the nicotinamide mononucleotide moiety of NADP(+) establish productive coenzyme binding. Electrostatic interactions of a Lys100-Leu103-Asn115-Glu336 tetrad play a pivotal role in assembling a catalytically competent active site. As predicted, Lys230* is positioned to deprotonate/reprotonate the α-hydroxyl in both reaction steps and Tyr160 moves into position to protonate C3 following ß-decarboxylation. A proton relay from the catalytic triad Tyr160-Asp307-Lys230* connects the α-hydroxyl of isocitrate to the bulk solvent to complete the picture of the catalytic mechanism.


Assuntos
Biocatálise , Domínio Catalítico/efeitos dos fármacos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Nucleotídeos de Adenina/metabolismo , Nucleotídeos de Adenina/farmacologia , Escherichia coli/enzimologia , Modelos Moleculares , NADP/metabolismo , NADP/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia
10.
Protein Expr Purif ; 81(2): 193-200, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22051151

RESUMO

Desulforubrerythrin from Campylobacter jejuni has recently been biochemical and spectroscopically characterized. It is a member of the rubrerythrin family, and it is composed of three structural domains: the N-terminal desulforedoxin domain with a non-heme iron center, followed by a four-helix bundle domain harboring a binuclear iron center and finally a C-terminal rubredoxin domain. To date, this is the first example of a protein presenting this kind of structural domain organization, and therefore the determination of its crystal structure may unveil unexpected structural features. Several attempts were made in order to obtain protein crystals, but always without success. As part of our strategy the thermofluor method was used to increase protein stability and its propensity to crystallize. This approach has been recently used to optimize protein buffer formulation, thus yielding more stable and homogenous protein samples. Thermofluor has also been used to identify cofactors/ligands or small molecules that may help stabilize native protein states. A successful thermofluor approach was used to select a pH buffer condition that allowed the crystallization of Campylobacter jejuni desulforubrerythrin, by screening both buffer pH and salt concentration. A buffer formulation was obtained which increased the protein melting temperature by 7°C relatively to the initial purification buffer. Desulforubrerythrin was seen to be stabilized by lower pH and high salt concentration, and was dialyzed into the new selected buffer, 100mM MES pH 6.2, 500mM NaCl. This stability study was complemented with a second thermofluor assay in which different additives were screened. A crystallization screening was carried out and protein crystals were rapidly obtained in one condition. Protein crystal optimization was done using the same additive screening. Interestingly, a correlation between the stability studies and crystallization experiments using the additive screening could be established. The work presented here shows an elegant example where thermofluor was shown to be a key biophysical method that allowed the identification of an improved buffer formulation and the applicability of this technique to increase the propensity of a protein to crystallize is discussed.


Assuntos
Campylobacter jejuni/química , Cristalização/métodos , Fluorometria/métodos , Hemeritrina/química , Rubredoxinas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Soluções Tampão , Campylobacter jejuni/genética , Clonagem Molecular , Cristalização/normas , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescência , Fluorometria/normas , Genes Bacterianos , Concentração de Íons de Hidrogênio , Proteínas Ferro-Enxofre/química , Concentração Osmolar , Desnaturação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Temperatura , Termodinâmica
11.
Proc Natl Acad Sci U S A ; 108(1): 97-102, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173279

RESUMO

The class II chelatases associated with heme, siroheme, and cobalamin biosynthesis are structurally related enzymes that insert a specific metal ion (Fe(2+) or Co(2+)) into the center of a modified tetrapyrrole (protoporphyrin or sirohydrochlorin). The structures of two related class II enzymes, CbiX(S) from Archaeoglobus fulgidus and CbiK from Salmonella enterica, that are responsible for the insertion of cobalt along the cobalamin biosynthesis pathway are presented in complex with their metallated product. A further structure of a CbiK from Desulfovibrio vulgaris Hildenborough reveals how cobalt is bound at the active site. The crystal structures show that the binding of sirohydrochlorin is distinctly different to porphyrin binding in the protoporphyrin ferrochelatases and provide a molecular overview of the mechanism of chelation. The structures also give insights into the evolution of chelatase form and function. Finally, the structure of a periplasmic form of Desulfovibrio vulgaris Hildenborough CbiK reveals a novel tetrameric arrangement of its subunits that are stabilized by the presence of a heme b cofactor. Whereas retaining colbaltochelatase activity, this protein has acquired a central cavity with the potential to chaperone or transport metals across the periplasmic space, thereby evolving a new use for an ancient protein subunit.


Assuntos
Cobalto/metabolismo , Evolução Molecular , Ferroquelatase/metabolismo , Modelos Moleculares , Família Multigênica/genética , Vitamina B 12/biossíntese , Archaeoglobus fulgidus/enzimologia , Domínio Catalítico/genética , Cristalização , Desulfovibrio vulgaris/enzimologia , Ferroquelatase/genética , Porfirinas/metabolismo , Salmonella enterica/enzimologia , Uroporfirinas/metabolismo
12.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 4): 339-53, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18391401

RESUMO

As a key regulator of mitosis, the Ser/Thr protein polo-like kinase-1 (Plk-1) is a well validated drug target in cancer therapy. In order to enable structure-guided drug design, determination of the crystal structure of the kinase domain of Plk-1 was attempted. Using a multi-parallel cloning and expression approach, a set of length variants were identified which could be expressed in large amounts from insect cells and which could be purified to high purity. However, all attempts to crystallize these constructs failed. Crystals were ultimately obtained by generating designed ankyrin-repeat proteins (DARPins) selective for Plk-1 and using them for cocrystallization. Here, the first crystal structure of the kinase domain of wild-type apo Plk-1, in complex with DARPin 3H10, is presented, underlining the power of selective DARPins as crystallization tools. The structure was refined to 2.3 A resolution and shows the active conformation of Plk-1. It broadens the basis for modelling and cocrystallization studies for drug design. The binding epitope of 3H10 is rich in arginine, glutamine and lysine residues, suggesting that the DARPin enabled crystallization by masking a surface patch which is unfavourable for crystal contact formation. Based on the packing observed in the crystal, a truncated DARPin variant was designed which showed improved binding characteristics.


Assuntos
Anquirinas/química , Proteínas de Ciclo Celular/química , Proteínas Serina-Treonina Quinases/química , Proteínas Proto-Oncogênicas/química , Sequência de Aminoácidos , Calorimetria , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/isolamento & purificação , Clonagem Molecular , Cristalização , Coleta de Dados , Humanos , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/isolamento & purificação , Proteínas Recombinantes/química , Quinase 1 Polo-Like
13.
Artigo em Inglês | MEDLINE | ID: mdl-18097095

RESUMO

The sorbitol operon regulator (SorC) regulates the metabolism of L-sorbose in Klebsiella pneumonia. SorC was overexpressed in Escherichia coli and purified, and crystals were obtained of a tetrameric form. A single crystal showed X-ray diffraction to 3.20 A. The crystal belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 91.6, b = 113.3, c = 184.1 A. Analysis of the molecular-replacement solution indicates the presence of four SorC molecules in the asymmetric unit.


Assuntos
Proteínas de Bactérias/química , Klebsiella pneumoniae/genética , Óperon , Proteínas Recombinantes/química , Sorbitol/metabolismo , Transativadores/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Cristalografia por Raios X , Substâncias Macromoleculares/química , Reação em Cadeia da Polimerase , Proteínas Recombinantes/isolamento & purificação , Sorbose/metabolismo , Difração de Raios X
14.
J Biol Chem ; 282(27): 19598-605, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17442671

RESUMO

Microbial amidases belong to the thiol nitrilases family and have potential biotechnological applications in chemical and pharmaceutical industries as well as in bioremediation. The amidase from Pseudomonas aeruginosa isa6 x 38-kDa enzyme that catalyzes the hydrolysis of a small range of short aliphatic amides. The hereby reported high resolution crystallographic structure shows that each amidase monomer is formed by a globular four-layer alphabetabetaalpha sandwich domain with an additional 81-residue long C-terminal segment. This wraps arm-in-arm with a homologous C-terminal chain of another monomer, producing a strongly packed dimer. In the crystal, the biological active homo-hexameric amidase is built grouping three such dimers around a crystallographic 3-fold axis. The structure also elucidates the structural basis for the enzyme activity, with the nitrilases catalytic triad at the bottom of a 13-A deep, funnel-shaped pocket, accessible from the solvent through a narrow neck with 3-A diameter. An acyl transfer intermediate, resulting from the purification protocol, was found bound to the amidase nucleophilic agent, Cys(166). These results suggest that some pocket defining residues should undergo conformational shifts to allow substrates and products to access and leave the catalytic pocket, for turnover to occur.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Pseudomonas aeruginosa/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
15.
Artigo em Inglês | MEDLINE | ID: mdl-17329817

RESUMO

The aliphatic amidase (acylamide amidohydrolase; EC 3.5.1.4) from Pseudomonas aeruginosa is a hexameric enzyme composed of six identical subunits with a molecular weight of approximately 38 kDa. Since microbial amidases are very important enzymes in industrial biocatalysis, the structural characterization of this enzyme will help in the design of novel catalytic activities of commercial interest. The present study reports the successful crystallization of the wild-type amidase from P. aeruginosa. Native crystals were obtained and a complete data set was collected at 1.4 A resolution, although the crystals showed diffraction to 1.25 A resolution. The crystals were found to belong to space group P6(3)22, with unit-cell parameters a = b = 102.60, c = 151.71 A, and contain one molecule in the asymmetric unit.


Assuntos
Amidoidrolases/química , Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Pseudomonas aeruginosa/enzimologia , Difração de Raios X/métodos , Amidoidrolases/análise , Bacillaceae/enzimologia , Proteínas de Bactérias/análise , Cristalização , Desenho de Fármacos , Microbiologia Industrial/métodos , Homologia Estrutural de Proteína
16.
Nature ; 443(7107): 110-4, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957732

RESUMO

RNA degradation is a determining factor in the control of gene expression. The maturation, turnover and quality control of RNA is performed by many different classes of ribonucleases. Ribonuclease II (RNase II) is a major exoribonuclease that intervenes in all of these fundamental processes; it can act independently or as a component of the exosome, an essential RNA-degrading multiprotein complex. RNase II-like enzymes are found in all three kingdoms of life, but there are no structural data for any of the proteins of this family. Here we report the X-ray crystallographic structures of both the ligand-free (at 2.44 A resolution) and RNA-bound (at 2.74 A resolution) forms of Escherichia coli RNase II. In contrast to sequence predictions, the structures show that RNase II is organized into four domains: two cold-shock domains, one RNB catalytic domain, which has an unprecedented alphabeta-fold, and one S1 domain. The enzyme establishes contacts with RNA in two distinct regions, the 'anchor' and the 'catalytic' regions, which act synergistically to provide catalysis. The active site is buried within the RNB catalytic domain, in a pocket formed by four conserved sequence motifs. The structure shows that the catalytic pocket is only accessible to single-stranded RNA, and explains the specificity for RNA versus DNA cleavage. It also explains the dynamic mechanism of RNA degradation by providing the structural basis for RNA translocation and enzyme processivity. We propose a reaction mechanism for exonucleolytic RNA degradation involving key conserved residues. Our three-dimensional model corroborates all existing biochemical data for RNase II, and elucidates the general basis for RNA degradation. Moreover, it reveals important structural features that can be extrapolated to other members of this family.


Assuntos
Escherichia coli/enzimologia , Exorribonucleases/química , Exorribonucleases/metabolismo , RNA/química , RNA/metabolismo , Catálise , Escherichia coli/genética , Exorribonucleases/genética , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Eletricidade Estática
17.
Artigo em Inglês | MEDLINE | ID: mdl-16820694

RESUMO

RNA degradation is important in the post-transcriptional control of gene expression. The processing, degradation and quality control of RNA is performed by many different classes of ribonucleases. Ribonuclease II (RNase II) is a 643-amino-acid enzyme that degrades single-stranded RNA from its 3'-end, releasing ribonucleoside 5'-monophosphates. RNase II was expressed both as the wild type and as a D209N mutant form. The latter was also produced as an SeMet derivative. The various protein forms were crystallized using the vapour-diffusion method. Wild-type RNase II was crystallized in two crystal forms, both of which belonged to space group P2(1). X-ray diffraction data were collected to 2.44 and 2.75 angstroms resolution, with unit-cell parameters a = 56.8, b = 125.7, c = 66.2 angstroms, beta = 111.9 degrees and a = 119.6, b = 57.2, c = 121.2 angstroms, beta = 99.7 degrees, respectively. The RNase II D209N mutant gave crystals that belonged to space group P6(5), with unit-cell parameters a = b = 86.3, c = 279.2 angstroms, and diffracted to 2.74 angstroms. Diffraction data from the mutant and its SeMet derivative enabled the determination of a partial Se-atom substructure by SIRAS.


Assuntos
Escherichia coli/enzimologia , Exorribonucleases/química , Exorribonucleases/isolamento & purificação , Cristalização , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Exorribonucleases/genética , Mutagênese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Selenometionina , Difração de Raios X
18.
Biochemistry ; 44(4): 1234-42, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15667217

RESUMO

Osteocalcin is a small (45 amino acids) secreted protein found to accumulate in bone and dentin of many organisms by interacting with calcium and hydroxyapatite, through the presence of three gamma-carboxylated residues. In this work, we describe the first X-ray crystal structure for a nonmammalian osteocalcin, obtained at 1.4 A resolution, purified from the marine teleost fish Argyrosomus regius. The three-dimensional fit between the A. regius structure and that of the only other known X-ray structure, the porcine osteocalcin, revealed a superposition of the Calpha atoms of their metal chelating residues, Gla and Asp, showing that their spatial distribution is consistent with the interatomic distances of calcium cations in the hydroxyapatite crystals. In both structures, the protein forms a tight globular arrangement of their three alpha-helices while the remaining residues, at N- and C-terminal regions, have essentially no secondary structure characteristics. This study revealed the presence of a fourth gamma-carboxylation at Glu(25), not previously detected in the structure of the porcine osteocalcin or in any other of the sequentially characterized mammalian osteocalcins (human, cow, and rat). A confirmation of the fourth Gla residue in A. regius osteocalcin was achieved via LC-MS analysis. These four doubly charged residues are, together with Asp(24), concentrated in a common surface region located on the same side of the molecule. This further suggests that the known high affinity of osteocalcin for bone mineral may be derived from the clustering of calcium binding sites on this surface of the molecules.


Assuntos
Ácido 1-Carboxiglutâmico/química , Ácido 1-Carboxiglutâmico/fisiologia , Osteocalcina/química , Osteocalcina/fisiologia , Perciformes , Sequência de Aminoácidos , Animais , Cálcio/química , Bovinos , Cristalografia por Raios X , Dissulfetos/química , Humanos , Ligação de Hidrogênio , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Ratos , Eletricidade Estática , Propriedades de Superfície , Suínos
19.
Proteins ; 54(1): 135-52, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14705030

RESUMO

The tetraheme cytochrome c3 is a small metalloprotein with ca. 13,000 Da found in sulfate-reducing bacteria, which is believed to act as a partner of hydrogenase. The three-dimensional structure of the oxidized and reduced forms of cytochrome c3 from Desulfovibrio desulfuricans ATCC 27774 at pH 7.6 were determined using high-resolution X-ray crystallography and were compared with the previously determined oxidized form at pH 4.0. Theoretical calculations were performed with both structures, using continuum electrostatic calculations and Monte Carlo sampling of protonation and redox states, in order to understand the molecular basis of the redox-Bohr and cooperativity effects related to the coupled transfer of electrons and protons. We were able to identify groups that showed redox-linked conformational changes. In particular, Glu61, His76, and propionate D of heme II showed important contributions to the redox-cooperativity, whereas His76, propionate A of heme I, and propionate D of heme IV were the key residues for the redox-Bohr effect. Upon reduction, an important movement of the backbone region surrounding hemes I and II was also identified, that, together with a few redox-linked conformational changes in side-chain residues, results in a significant decrease in the solvent accessibility of hemes I and II.


Assuntos
Grupo dos Citocromos c/química , Desulfovibrio desulfuricans/química , Modelos Moleculares , Aminoácidos/química , Cristalografia por Raios X , Heme/química , Concentração de Íons de Hidrogênio , Oxirredução , Conformação Proteica , Eletricidade Estática , Termodinâmica
20.
J Biol Inorg Chem ; 8(5): 540-548, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12764602

RESUMO

The hybrid cluster proteins from the sulfate reducing bacteria Desulfovibrio desulfuricans ATCC 27774 ( Dd) and Desulfovibrio vulgaris strain Hildenborough ( Dv) have been isolated and crystallized anaerobically. In each case, the protein has been reduced with dithionite and the crystal structure of the reduced form elucidated using X-ray synchrotron radiation techniques at 1.25 A and 1.55 A resolution for Dd and Dv, respectively. Although the overall structures of the proteins are unchanged upon reduction, there are significant changes at the hybrid cluster centres. These include significant movements in the position of the iron atom linked to the persulfide moiety in the oxidized as-isolated proteins and the sulfur atom of the persulfide itself. The nature of these changes is described and the implications with respect to the function of hybrid cluster proteins are discussed.


Assuntos
Desulfovibrio vulgaris/química , Desulfovibrio/química , Proteínas/química , Cristalização , Cristalografia por Raios X , Desulfovibrio/efeitos da radiação , Desulfovibrio vulgaris/efeitos da radiação , Immunoblotting , Modelos Moleculares , Conformação Molecular , Oxirredução , Oxirredutases/química , Proteínas/efeitos da radiação , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...