Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nat Metab ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720117

RESUMO

Isolated complex I (CI) deficiencies are a major cause of primary mitochondrial disease. A substantial proportion of CI deficiencies are believed to arise from defects in CI assembly factors (CIAFs) that are not part of the CI holoenzyme. The biochemistry of these CIAFs is poorly defined, making their role in CI assembly unclear, and confounding interpretation of potential disease-causing genetic variants. To address these challenges, we devised a deep mutational scanning approach to systematically assess the function of thousands of NDUFAF6 genetic variants. Guided by these data, biochemical analyses and cross-linking mass spectrometry, we discovered that the CIAF NDUFAF6 facilitates incorporation of NDUFS8 into CI and reveal that NDUFS8 overexpression rectifies NDUFAF6 deficiency. Our data further provide experimental support of pathogenicity for seven novel NDUFAF6 variants associated with human pathology and introduce functional evidence for over 5,000 additional variants. Overall, our work defines the molecular function of NDUFAF6 and provides a clinical resource for aiding diagnosis of NDUFAF6-related diseases.

2.
Am J Hum Genet ; 111(3): 594-613, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38423010

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Assuntos
Epilepsia Generalizada , Atrofia Óptica , Animais , Humanos , Criança , Peixe-Zebra/genética , Atrofia Óptica/genética , Fenótipo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
3.
Ann Clin Transl Neurol ; 11(3): 819-825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327089

RESUMO

INTRODUCTION: COXPD23 is a rare mitochondrial disease caused by biallelic pathogenic variants in GTPBP3. We report on two siblings with a mild phenotype. CASE REPORTS: The young boy presented with global developmental delay, ataxic gait and upper limbs tremor, and the older sister with absence seizures and hypertrophic cardiomyopathy. Respiratory chain impairment was confirmed in muscle. DISCUSSION: Reviewed cases point toward clustering around two prevalent phenotypes: an early-onset presentation with severe fatal encephalopathy and a late milder presentation with global developmental delay/ID and cardiopathy, with the latter as, is the main feature. Our patients showed an intermediate phenotype with intrafamilial variability.


Assuntos
Doenças Mitocondriais , Convulsões , Masculino , Humanos , Mitocôndrias , Fenótipo , Proteínas de Ligação ao GTP
4.
EBioMedicine ; 97: 104849, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898095

RESUMO

BACKGROUND: Paediatric Huntington disease with highly expanded mutations (HE-PHD; >80 CAG repeats) presents atypically, compared to adult-onset Huntington disease (AOHD), with neurodevelopmental delay, epilepsy, abnormal brain glucose metabolism, early striatal damage, and reduced lifespan. Since genetic GLUT-1 deficiency syndrome shows a symptom spectrum similar to HE-PHD, we investigated the potential role of the two main glucose transporters, GLUT-1 and GLUT-3, in HE-PHD. METHODS: We compared GLUT-1 and GLUT-3 protein expression in HE-PHD, juvenile-onset (JOHD), and AOHD brains (n = 2; n = 3; n = 6) and periphery (n = 3; n = 2; n = 2) versus healthy adult controls (n = 6; n = 6). We also investigated mitochondrial complexes and hexokinase-II protein expression. FINDINGS: GLUT-1 and GLUT-3 expression were significantly lower in HE-PHD frontal cortex (p = 0.009, 95% [CI 13.4, 14.7]; p = 0.017, 95% [CI 14.2, 14.5]) versus controls. In fibroblasts, GLUT-1 and GLUT-3 expression were lower compared to controls (p < 0.0001, 95% [CI 0.91, 1.09]; p = 0.046, 95% [CI 0.93, 1.07]). In the frontal cortex, this occurred without evidence of extensive neuronal degeneration. Patients with HE-PHD had deregulated mitochondrial complex expression, particularly complexes II-III, levels of which were lower in frontal cortex versus controls (p = 0.027, 95% [CI 17.1, 17.6]; p = 0.002, 95% CI [16.6, 16.9]) and patients with AOHD (p = 0.052, 95% [CI 17.0, 17.6]; p = 0.002, 95% [CI 16.6, 16.7]). Hexokinase-II expression was also lower in HE-PHD frontal cortex and striatum versus controls (p = 0.010, 95% [CI 17.8, 18.2]; p = 0.045, 95% [CI 18.6, 18.7]) and in frontal cortex versus patients with AOHD (p = 0.013, 95% [CI 17.7, 18.1]). Expression JOHD levels were consistently different to those of HE-PHD but similar to those of AOHD. INTERPRETATION: Our data suggest a dysfunctional hypometabolic state occurring specifically in paediatric Huntington disease brains. FUNDING: '5 × 1000' Personal Income Tax donation to LIRH Foundation; Italian Ministry of HealthRC2301MH04 and RF-2016-02364123 to CSS.


Assuntos
Hexoquinase , Doença de Huntington , Adulto , Criança , Humanos , Encéfalo/metabolismo , Estudos de Casos e Controles , Fibroblastos/metabolismo , Hexoquinase/metabolismo , Doença de Huntington/genética
6.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901881

RESUMO

Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase holoenzyme, which adds telomeric DNA repeats on chromosome ends to counteract telomere shortening. In addition, there is evidence of TERT non-canonical functions, among which is an antioxidant role. In order to better investigate this role, we tested the response to X-rays and H2O2 treatment in hTERT-overexpressing human fibroblasts (HF-TERT). We observed in HF-TERT a reduced induction of reactive oxygen species and an increased expression of the proteins involved in the antioxidant defense. Therefore, we also tested a possible role of TERT inside mitochondria. We confirmed TERT mitochondrial localization, which increases after oxidative stress (OS) induced by H2O2 treatment. We next evaluated some mitochondrial markers. The basal mitochondria quantity appeared reduced in HF-TERT compared to normal fibroblasts and an additional reduction was observed after OS; nevertheless, the mitochondrial membrane potential and morphology were better conserved in HF-TERT. Our results suggest a protective function of TERT against OS, also preserving mitochondrial functionality.


Assuntos
Antioxidantes , Telomerase , Humanos , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Telomerase/metabolismo
7.
Cerebellum ; 22(6): 1313-1319, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36447112

RESUMO

AFG3-like matrix AAA peptidase subunit 2 gene (AFG3L2, OMIM * 604,581) biallelic mutations lead to autosomal recessive spastic ataxia-5 SPAX5, OMIM # 614,487), a rare hereditary form of ataxia. The clinical spectrum includes early-onset cerebellar ataxia, spasticity, and progressive myoclonic epilepsy (PME). In Italy, the epidemiology of the disease is probably underestimated. The advent of next generation sequencing (NGS) technologies has speeded up the diagnosis of hereditary diseases and increased the percentage of diagnosis of rare disorders, such as the rare hereditary ataxia groups. Here, we describe two patients from two different villages in the province of Ferrara, who manifested a different clinical ataxia-plus history, although carrying the same biallelic mutation in AFG3L2 (p.Met625Ile) identified through NGS analysis.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , ATPases Associadas a Diversas Atividades Celulares/genética , Degenerações Espinocerebelares/genética , Ataxia Cerebelar/genética , Mutação/genética , Itália , Proteases Dependentes de ATP/genética
8.
Biochim Biophys Acta Gen Subj ; 1867(1): 130255, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265765

RESUMO

The mitochondrial translation machinery allows the synthesis of the mitochondrial-encoded subunits of the electron transport chain. Defects in this process lead to mitochondrial physiology failure; in humans, they are associated with early-onset, extremely variable and often fatal disorder. The use of a simple model to study the mitoribosomal defects is mandatory to overcome the difficulty to analyze the impact of pathological mutations in humans. In this paper we study in nematode Caenorhabditis elegans the silencing effect of the mrpl-24 gene, coding for the mitochondrial ribosomal protein L-24 (MRPL-24). This is a structural protein of the large subunit 39S of the mitoribosome and its effective physiological function is not completely elucidated. We have evaluated the nematode's fitness fault and investigated the mitochondrial defects associated with MRPL-24 depletion. The oxidative stress response activation due to the mitochondrial alteration has been also investigated as a compensatory physiological mechanism. For the first time, we demonstrated that MRPL-24 reduction increases the expression of detoxifying enzymes such as SOD-3 and GST-4 through the involvement of transcription factor SKN-1. BACKGROUND: In humans, mutations in genes encoding mitochondrial ribosomal proteins (MRPs) often cause early-onset, severe, fatal and extremely variable clinical defects. Mitochondrial ribosomal protein L-24 (MRPL24) is a structural protein of the large subunit 39S of the mitoribosome. It is highly conserved in different species and its effective physiological function is not completely elucidated. METHODS: We characterized the MRPL24 functionality using the animal model Caenorhabditis elegans. We performed the RNA mediated interference (RNAi) by exposing the nematodes' embryos to double-stranded RNA (dsRNA) specific for the MRPL-24 coding sequence. We investigated for the first time in C. elegans, the involvement of the MRPL-24 on the nematode's fitness and its mitochondrial physiology. RESULTS: Mrpl-24 silencing in C. elegans negatively affected the larval development, progeny production and body bending. The analysis of mitochondrial functionality revealed loss of mitochondrial network and impairment of mitochondrial functionality, as the decrease of oxygen consumption rate and the ROS production, as well as reduction of mitochondrial protein synthesis. Finally, the MRPL-24 depletion activated the oxidative stress response, increasing the expression levels of two detoxifying enzymes, SOD-3 and GST-4. CONCLUSIONS: In C. elegans the MRPL-24 depletion activated the oxidative stress response. This appears as a compensatory mechanism to the alteration of the mitochondrial functionality and requires the involvement of transcription factor SKN-1. GENERAL SIGNIFICANCE: C. elegans resulted in a good model for the study of mitochondrial disorders and its use as a simple and pluricellular organism could open interesting perspectives to better investigate the pathologic mechanisms underlying these devastating diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Estresse Oxidativo/genética , Superóxido Dismutase/metabolismo
9.
Front Oncol ; 13: 1324013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260858

RESUMO

The increased availability of genetic technologies has significantly improved the detection of novel germline variants conferring a predisposition to tumor development in patients with malignant disease. The identification of variants of uncertain significance (VUS) represents a challenge for the clinician, leading to difficulties in decision-making regarding medical management, the surveillance program, and genetic counseling. Moreover, it can generate confusion and anxiety for patients and their family members. Herein, we report a 5-year-old girl carrying a VUS in the Succinate Dehydrogenase Complex Subunit C (SHDC) gene who had been previously treated for high-risk neuroblastoma and subsequently followed by the development of secondary acute myeloid leukemia. In this context, we describe how functional studies can provide additional insight on gene function determining whether the variant interferes with normal protein function or stability.

10.
Cell Death Dis ; 13(10): 855, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207321

RESUMO

Calcium concentration must be finely tuned in all eukaryotic cells to ensure the correct performance of its signalling function. Neuronal activity is exquisitely dependent on the control of Ca2+ homeostasis: its alterations ultimately play a pivotal role in the origin and progression of many neurodegenerative processes. A complex toolkit of Ca2+ pumps and exchangers maintains the fluctuation of cytosolic Ca2+ concentration within the appropriate threshold. Two ubiquitous (isoforms 1 and 4) and two neuronally enriched (isoforms 2 and 3) of the plasma membrane Ca2+ATPase (PMCA pump) selectively regulate cytosolic Ca2+ transients by shaping the sub-plasma membrane (PM) microdomains. In humans, genetic mutations in ATP2B1, ATP2B2 and ATP2B3 gene have been linked with hearing loss, cerebellar ataxia and global neurodevelopmental delay: all of them were found to impair pump activity. Here we report three additional mutations in ATP2B3 gene corresponding to E1081Q, R1133Q and R696H amino acids substitution, respectively. Among them, the novel missense mutation (E1081Q) immediately upstream the C-terminal calmodulin-binding domain (CaM-BD) of the PMCA3 protein was present in two patients originating from two distinct families. Our biochemical and molecular studies on PMCA3 E1081Q mutant have revealed a splicing variant-dependent effect of the mutation in shaping the sub-PM [Ca2+]. The E1081Q substitution in the full-length b variant abolished the capacity of the pump to reduce [Ca2+] in the sub-PM microdomain (in line with the previously described ataxia-related PMCA mutations negatively affecting Ca2+ pumping activity), while, surprisingly, its introduction in the truncated a variant selectively increased Ca2+ extrusion activity in the sub-PM Ca2+ microdomains. These results highlight the importance to set a precise threshold of [Ca2+] by fine-tuning the sub-PM microdomains and the different contribution of the PMCA splice variants in this regulation.


Assuntos
Ataxia Cerebelar , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Aminoácidos , Ataxia/genética , Ataxia/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Membrana Celular/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Humanos , Mutação/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
11.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055214

RESUMO

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Assuntos
Proteínas de Ligação ao Cálcio , Doenças Mitocondriais , Proteínas de Ligação ao Cálcio/genética , Homeostase/genética , Humanos , Proteínas de Membrana/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Sistema Nervoso/metabolismo , Saccharomyces cerevisiae/metabolismo
12.
Neurol Genet ; 8(4): e200007, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35812164

RESUMO

Objectives: Topoisomerase III alpha plays a key role in the dissolution of double Holliday junctions and is required for mitochondrial DNA (mtDNA) replication and maintenance. Sequence variants in the TOP3A gene have been associated with the Bloom syndrome-like disorder and described in an adult patient with progressive external ophthalmoplegia. The purpose of this report is to expand the clinical phenotype of the TOP3A-related diseases and clarify the role of this gene in primary mitochondrial disorders. Methods: A 44-year-old woman was referred to our hospital because of exercise intolerance and creatine kinase increase. Muscle biopsy and a targeted next-generation sequencing (NGS) analysis were performed. Results: A histopathologic assessment documented a mitochondrial myopathy, and a molecular analysis revealed a novel homozygous variant in the TOP3A gene associated with multiple mtDNA deletions. Discussion: This case suggests that TOP3A is one of the several nuclear genes associated with mtDNA maintenance disorder and expands the spectrum of its associated phenotypes, ranging from a clinical condition defined Bloom syndrome-like disorder to canonical mitochondrial syndromes.

14.
Clin Genet ; 102(1): 12-21, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396703

RESUMO

Prompt diagnosis of complex phenotypes is a challenging task in clinical genetics. Whole exome sequencing has proved to be effective in solving such conditions. Here, we report on an unpredictable presentation of Werner Syndrome (WRNS) in a 12-year-old girl carrying a homozygous truncating variant in RECQL2, the gene mutated in WRNS, and a de novo activating missense change in PTPN11, the major Noonan syndrome gene, encoding SHP2, a protein tyrosine phosphatase positively controlling RAS function and MAPK signaling, which have tightly been associated with senescence in primary cells. All the major WRNS clinical criteria were present with an extreme precocious onset and were associated with mild intellectual disability, severe growth retardation and facial dysmorphism. Compared to primary fibroblasts from adult subjects with WRNS, proband's fibroblasts showed a dramatically reduced proliferation rate and competence, and a more accelerated senescence, in line with the anticipated WRNS features occurring in the child. In vitro functional characterization of the SHP2 mutant documented its hyperactive behavior and a significantly enhanced activation of the MAPK pathway. Based on the functional interaction of WRN and MAPK signaling in processes relevant to replicative senescence, these findings disclose a unique phenotype likely resulting from negative genetic interaction.


Assuntos
Síndrome de Noonan , Síndrome de Werner , Criança , Mutação com Ganho de Função , Humanos , Mutação , Síndrome de Noonan/genética , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Síndrome de Werner/genética
15.
Clin Genet ; 102(1): 56-60, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35246835

RESUMO

Genetic defect in the nuclear encoded subunits of cytochrome c oxidase are very rare. To date, most deleterious variants affect the mitochondrially encoded subunits of complex IV and the nuclear genes encoded for assembly factors. A biallelic pathogenic variant in the mitochondrial complex IV subunit COX5A was previously reported in a couple of sibs with failure to thrive, lactic acidosis and pulmonary hypertension and a lethal phenotype. Here, we describe a second family with a 11-year-old girl presenting with failure to thrive, lactic acidosis, hypoglycemia and short stature. Clinical exome revealed the homozygous missense variant c.266 T > G in COX5A, which produces a drop of the corresponding protein and a reduction of the COX activity. Compared to the previous observation, this girl showed an attenuated metabolic derangement without involvement of the cardiovascular system and neurodevelopment. Our observation confirms that COX5A recessive variants may cause mitochondrial disease and expands the associated phenotype to less severe presentations.


Assuntos
Acidose Láctica , Nanismo , Hipoglicemia , Acidose Láctica/genética , Acidose Láctica/patologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Insuficiência de Crescimento/genética , Homozigoto , Humanos , Hipoglicemia/genética , Fenótipo
16.
Hum Mol Genet ; 31(4): 561-575, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34508588

RESUMO

Germline-activating mutations in HRAS cause Costello syndrome (CS), a cancer prone multisystem disorder characterized by reduced postnatal growth. In CS, poor weight gain and growth are not caused by low caloric intake. Here, we show that constitutive plasma membrane translocation and activation of the GLUT4 glucose transporter, via reactive oxygen species-dependent AMP-activated protein kinase α and p38 hyperactivation, occurs in primary fibroblasts of CS patients, resulting in accelerated glycolysis and increased fatty acid synthesis and storage as lipid droplets. An accelerated autophagic flux was also identified as contributing to the increased energetic expenditure in CS. Concomitant inhibition of p38 and PI3K signaling by wortmannin was able to rescue both the dysregulated glucose intake and accelerated autophagic flux. Our findings provide a mechanistic link between upregulated HRAS function, defective growth and increased resting energetic expenditure in CS, and document that targeting p38 and PI3K signaling is able to revert this metabolic dysfunction.


Assuntos
Síndrome de Costello , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Fibroblastos/metabolismo , Humanos , Oxirredução , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética
18.
Genet Med ; 23(12): 2352-2359, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34446925

RESUMO

PURPOSE: Recent reports of individuals with cytoplasmic transfer RNA (tRNA) synthetase-related disorders have identified cases with phenotypic variability from the index presentations. We sought to assess phenotypic variability in individuals with AARS1-related disease. METHODS: A cross-sectional survey was performed on individuals with biallelic variants in AARS1. Clinical data, neuroimaging, and genetic testing results were reviewed. Alanyl tRNA synthetase (AlaRS) activity was measured in available fibroblasts. RESULTS: We identified 11 affected individuals. Two phenotypic presentations emerged, one with early infantile-onset disease resembling the index cases of AARS1-related epileptic encephalopathy with deficient myelination (n = 7). The second (n = 4) was a later-onset disorder, where disease onset occurred after the first year of life and was characterized on neuroimaging by a progressive posterior predominant leukoencephalopathy evolving to include the frontal white matter. AlaRS activity was significantly reduced in five affected individuals with both early infantile-onset and late-onset phenotypes. CONCLUSION: We suggest that variants in AARS1 result in a broader clinical spectrum than previously appreciated. The predominant form results in early infantile-onset disease with epileptic encephalopathy and deficient myelination. However, a subgroup of affected individuals manifests with late-onset disease and similarly rapid progressive clinical decline. Longitudinal imaging and clinical follow-up will be valuable in understanding factors affecting disease progression and outcome.


Assuntos
Leucoencefalopatias , Estudos Transversais , Progressão da Doença , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Fenótipo
19.
ESC Heart Fail ; 8(3): 2310-2315, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33835720

RESUMO

We report a novel cardiomyopathy associated to Usher syndrome and related to combined mutation of MYO7A and Calreticulin genes. A 37-year-old man with deafness and vision impairment because of retinitis pigmentosa since childhood and a MYO7A gene mutation suggesting Usher syndrome, developed a dilated cardiomyopathy with ventricular tachyarrhythmias and recurrent syncope. At magnetic resonance cardiomyopathy was characterized by left ventricular dilatation with hypo-contractility and mitral prolapse with valve regurgitation. At left ventricular endomyocardial biopsy, it was documented cardiomyocyte disconnection because of cytoskeletal disorganization of cell-to-cell contacts, including intercalated discs, and mitochondrial damage and dysfunction with significant reduction of adenosine triphosphate production in patient cultured fibroblasts. At an extensive analysis by next-generation-sequencing of 4183 genes potentially related to the cardiomyopathy a pathogenic mutation of calreticulin was found. The cardiomyopathy appeared to be functionally and electrically stabilized by a combination therapy including carvedilol and amiodarone at a follow-up of 18 months.


Assuntos
Cardiomiopatia Dilatada , Síndromes de Usher , Adulto , Calreticulina/genética , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Criança , Análise Mutacional de DNA , Humanos , Masculino , Mutação , Miosina VIIa , Miosinas/genética , Linhagem , Síndromes de Usher/diagnóstico , Síndromes de Usher/genética
20.
Hum Mutat ; 42(6): 699-710, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33715266

RESUMO

Isolated biochemical deficiency of mitochondrial complex I is the most frequent signature among mitochondrial diseases and is associated with a wide variety of clinical symptoms. Leigh syndrome represents the most frequent neuroradiological finding in patients with complex I defect and more than 80 monogenic causes have been involved in the disease. In this report, we describe seven patients from four unrelated families harboring novel NDUFA12 variants, with six of them presenting with Leigh syndrome. Molecular genetic characterization was performed using next-generation sequencing combined with the Sanger method. Biochemical and protein studies were achieved by enzymatic activities, blue native gel electrophoresis, and western blot analysis. All patients displayed novel homozygous mutations in the NDUFA12 gene, leading to the virtual absence of the corresponding protein. Surprisingly, despite the fact that in none of the analyzed patients, NDUFA12 protein was detected, they present a different onset and clinical course of the disease. Our report expands the array of genetic alterations in NDUFA12 and underlines phenotype variability associated with NDUFA12 defect.


Assuntos
Doença de Leigh/genética , Doenças Mitocondriais/genética , NADPH Desidrogenase/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Consanguinidade , Complexo I de Transporte de Elétrons/genética , Família , Feminino , Predisposição Genética para Doença , Humanos , Itália , Doença de Leigh/complicações , Doença de Leigh/patologia , Masculino , Doenças Mitocondriais/complicações , Doenças Mitocondriais/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...