RESUMO
Borreria verticillata (L.) G. Mey. known vassourinha has antibacterial, antimalarial, hepatoprotective, antioxidative, analgesic, and anti-inflammatory, however, its antinociceptive action requires further studies. Aim of the study evaluated the antinociceptive activity of B. verticillata hydroalcoholic extract (EHBv) and ethyl acetate fraction (FAc) by in vivo and in silico studies. In vivo assessment included the paw edema test, writhing test, formalin test and tail flick test. Wistar rats and Swiss mice were divided into 6 groups and given the following treatments oral: 0.9% NaCl control group (CTRL), 10 mg/kg memantine (MEM), 10 mg/kg indomethacin (INDO), 500 mg/kg EHBv (EHBv 500), 25 mg/kg FAc (FAc 25) and 50 mg/kg FAc (FAc 50). EHBv, FAc 25 and 50 treatments exhibited anti-edematous and peripheral antinociceptive effects. For in silico assessment, compounds identified in FAc were subjected to molecular docking with COX-2, GluN1a and GluN2B. Ursolic acid (UA) was the compound with best affinity parameters (binding energy and inhibition constant) for COX-2, GluN1a, GluN2B, and was selected for further analysis with molecular dynamics (MD) simulations. In MD simulations, UA exhibited highly frequent interactions with residues Arg120 and Glu524 in the COX-2 active site and NMDA, whereby it might prevent COX-2 and NMDA receptor activation. Treatment with UA 10 mg/Kg showed peripheral and central antinociceptive effect. The antinociceptive effect of B. verticillata might be predominantly attributed to peripheral actions, including the participation of anti-inflammatory components. Ursolic acid is the main active component and seems to be a promising source of COX-2 inhibitors and NMDA receptor antagonists.
RESUMO
The chronicity of osteoarthritis (OA), characterized by pain and inflammation in the joints, is linked to a glutamate receptor, N-methyl-D-aspartate (NMDA). The use of plant species such as Chenopodium ambrosioides L. (Amaranthaceae) as NMDA antagonists offers a promising perspective. This work aims to analyze the antinociceptive and anti-inflammatory responses of the crude hydroalcoholic extract (HCE) of C. ambrosioides leaves in an experimental OA model. Wistar rats were separated into six groups (n = 24): clean (C), negative control (CTL-), positive control (CTL+), HCE0.5, HCE5 and HCE50. The first group received no intervention. The other groups received an intra-articular injection of sodium monoiodoacetate (MIA) (8 mg/kg) on day 0. After six hours, they were orally treated with saline, Maxicam plus (meloxicam + chondroitin sulfate) and HCE at doses of 0.5 mg/kg, 5 mg/kg and 50 mg/kg, respectively. After three, seven and ten days, clinical evaluations were performed (knee diameter, mechanical allodynia, mechanical hyperalgesia and motor activity). On the tenth day, after euthanasia, synovial fluid and draining lymph node were collected for cellular quantification, and cartilage was collected for histopathological analysis. Finally, molecular docking was performed to evaluate the compatibility of ascaridole, a monoterpene found in HCE, with the NMDA receptor. After the third day, HCE reduced knee edema. HCE5 showed less cellular infiltrate in the cartilage and synovium and lower intensities of allodynia from the third day and of hyperalgesia from the seventh day up to the last treatment day. The HCE5 and HCE50 groups improved in forced walking. In relation to molecular docking, ascaridole showed NMDA receptor binding affinity. C. ambrosioides HCE was effective in the treatment of OA because it reduced synovial inflammation and behavioral changes due to pain. This effect may be related to the antagonistic effect of ascaridole on the NMDA receptor.
Assuntos
Chenopodium ambrosioides/química , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Monoterpenos Cicloexânicos , Modelos Animais de Doenças , Simulação de Acoplamento Molecular , Monoterpenos/administração & dosagem , Monoterpenos/química , Monoterpenos/farmacologia , Dor/etiologia , Peróxidos/administração & dosagem , Peróxidos/química , Peróxidos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Ratos , Ratos Wistar , Líquido Sinovial/efeitos dos fármacos , Resultado do TratamentoRESUMO
This study aimed to evaluate the safety of the hydroalcoholic extract (HE) of Syzygium cumini (L.) Skeels, Myrtaceae, leaves in rodents. Acute toxicity was evaluated through the determination of a LD50 in mice and rats (up to 14 days). In mice, the oral administration (p.o.) of the HE (0.1 at 6 g/kg) did not cause any death. When administered by intraperitoneal route (i.p.) the HE (0.1 at 1 g/kg) caused death of the animals (LD50 of 0.489 g/kg). In rats, the HE (0.5, 1 and 2 g/kg, p.o.) did not cause any death, while by i.p., only the 2 g/kg dose was lethal to 67 percent of the animals. To evaluate chronic toxicity, groups of rats daily received the HE (0.05, 0.1 and 0.25 g/kg) through p.o., during 30, 90 or 180 days and the effects on behavior, body weight, feed consumed were measured. Histology, hematology and biochemical parameters were measured at the end of the treatment. After a 30-day treatment, the HE caused changes in some biochemical parameters. Histological examination of the liver, kidneys, lungs, heart, stomach, intestine and pancreas showed normal architecture suggesting no morphological disturbances. These data may mean that the HE of S. cumini does not exert acute or chronic toxic effects by oral administration.
RESUMO
The gastroprotective action of the aqueous extract (AE) and the hydroalcoholic extract obtained from the leaves of Struthanthus marginatus (Desr.) Blume, Loranthaceae, were performed with in vivo models in rodents using: ethanol, indomethacin or stress-induced ulcers, determination of gastric secretion and the mucus production. The scavenger activity of AE in vitro was tested by the DPPH method. The treatment with the extracts (125-1000 mg/kg) significantly inhibited ulcerative lesions in comparison with the negative control groups in all the models evaluated and demonstrated greater effectiveness of the aqueous extract. Regarding the model of gastric secretion, a reduction in volume of gastric juice and total acidity was observed, as well as an increase in the gastric pH. The treatment of rats raised the gastric mucus production. Significant DPPH scavenging activity was evident in the AE. No sign of toxicity was observed. These results show that S. marginatus possesses gastroprotective activity. There are indications that the mechanisms involved in anti-ulcer activity are related to a decrease in acid secretion and an increase in gastric mucus content. Also, there is evidence for the involvement of antioxidant activity in the gastroprotective mechanism.
RESUMO
The antispasmodic activity of Jatropha gossypiifolia L., Euphorbiaceae, aerial parts was investigated in rodents using the mouse intestinal transit model and acetylcholine (ACh, 10-9 to 10-4 M) and calcium (CaCl2, 10-4 to 10-1 M)-induced contractions of isolated rat jejunum. Similar to atropine (1 mg/kg), oral doses of ethanolic extract (EE) of J. gossypiifolia (500, 1000 and 2000 mg/kg) produced a decrease in intestinal transit (37.6 to 57.1 percent) when compared with control. The ACh-induced contraction in the jejunum was inhibited by EE (0.5, 1.0 and 2.0 mg/mL), chloroformic (CF) and aqueous fractions (0.1 and 0.5 mg/mL) and methanolic subfraction (0.05 and 0.25 mg/mL), suggesting an antimuscarinic mechanism. CaCl2 - induced responses in jejunum were also attenuated in the presence of CF (0.05 and 0.1 mg/mL) implying a direct interference of CF with the influx of calcium ions in the cells. Only the organic fraction of the extract had a calcium-antagonist effect, whereas both chloroformic and aqueous fractions had anticholinergic effect. These results suggest that the antispasmodic effect of J. gossypiifolia may be due a combination of anticholinergic and calcium antagonist mechanisms.