Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Biosci (Landmark Ed) ; 29(7): 251, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39082337

RESUMO

BACKGROUND: Selective deprivation of glutamine has been shown to accelerate the generation of reactive oxygen species (ROS) and to impair the activity of a specific pentose phosphate pathway (PPP) located within the endoplasmic reticulum (ER). The consequent oxidative damage suggests that glucose flux through this reticular pathway might contribute to the redox stress of breast cancer cells. We thus evaluated whether this response is reproduced when the glutamine shortage is coupled with the glucose deprivation. METHODS: Cancer growth, metabolic plasticity and redox status were evaluated under saturating conditions and after 48 h starvation (glucose 2.5 mM, glutamine 0.5 mM). The Seahorse technology was used to estimate adenosine triphosphate (ATP)-linked and ATP-independent oxygen consumption rate (OCR) as well as proton efflux rate (PER). 18F-fluoro-deoxy-glucose (FDG) uptake was evaluated through the LigandTracer device. Proliferation rate was estimated by the carboxyfluorescein-diacetate-succinimidyl ester (CFSE) staining, while cell viability by the propidium iodide exclusion assay. RESULTS: Starvation reduced the proliferation rate of MCF-7 cells without affecting their viability. It also decreased lactate release and PER. Overall OCR was left unchanged although ATP-synthase dependent fraction was increased under nutrient shortage. Glutaminolysis inhibition selectively impaired the ATP-independent and the oligomycin-sensitive OCR in control and starved cultures, respectively. The combined nutrient shortage decreased the cytosolic and mitochondrial markers of redox stress. It also left unchanged the expression of the reticular unfolded protein marker GRP78. By contrast, starvation decreased the expression of hexose-6P-dehydrogenase (H6PD) thus decreasing the glucose flux through the ER-PPP as documented by the profound impairment in the uptake rate of FDG. CONCLUSIONS: When combined with glucose deprivation, glutamine shortage does not elicit the expected enhancement of ROS generation in the studied breast cancer cell line. Combined with the decreased activity of ER-PPP, this observation suggests that glutamine interferes with the reticular glucose metabolism to regulate the cell redox balance.


Assuntos
Neoplasias da Mama , Chaperona BiP do Retículo Endoplasmático , Glucose , Glutamina , Humanos , Glutamina/metabolismo , Glucose/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Células MCF-7 , Chaperona BiP do Retículo Endoplasmático/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Consumo de Oxigênio , Oxirredução , Sobrevivência Celular/efeitos dos fármacos
3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928466

RESUMO

Cutaneous melanoma is the most dangerous and deadly form of human skin malignancy. Despite its rarity, it accounts for a staggering 80% of deaths attributed to cutaneous cancers overall. Moreover, its final stages often exhibit resistance to drug treatments, resulting in unfavorable outcomes. Hence, ensuring access to novel and improved chemotherapeutic agents is imperative for patients grappling with this severe ailment. Pyrazole and its fused systems derived thereof are heteroaromatic moieties widely employed in medicinal chemistry to develop effective drugs for various therapeutic areas, including inflammation, pain, oxidation, pathogens, depression, and fever. In a previous study, we described the biochemical properties of a newly synthesized group of imidazo-pyrazole compounds. In this paper, to improve our knowledge of the pharmacological properties of these molecules, we conduct a differential proteomic analysis on a human melanoma cell line treated with one of these imidazo-pyrazole derivatives. Our results detail the changes to the SKMEL-28 cell line proteome induced by 24, 48, and 72 h of 3e imidazo-pyrazole treatment. Notably, we highlight the down-regulation of the Ras-responsive element binding protein 1 (RREB1), a member of the zinc finger transcription factors family involved in the tumorigenesis of melanoma. RREB1 is a downstream element of the MAPK pathway, and its activation is mediated by ERK1/2 through phosphorylation.


Assuntos
Melanoma , Proteômica , Pirazóis , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Pirazóis/farmacologia , Pirazóis/química , Proteômica/métodos , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteínas de Ligação a DNA/metabolismo , Imidazóis/farmacologia , Imidazóis/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteoma/metabolismo
4.
Cancer Immunol Immunother ; 73(2): 27, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280019

RESUMO

Chronic lymphocytic leukemia (CLL) is a disease of the elderly, often presenting comorbidities like osteoporosis and requiring, in a relevant proportion of cases, treatment with bisphosphonates (BPs). This class of drugs was shown in preclinical investigations to also possess anticancer properties. We started an in vitro study of the effects of BPs on CLL B cells activated by microenvironment-mimicking stimuli and observed that, depending on drug concentration, hormetic effects were induced on the leukemic cells. Higher doses induced cytotoxicity whereas at lower concentrations, more likely occurring in vivo, the drugs generated a protective effect from spontaneous and chemotherapy-induced apoptosis, and augmented CLL B cell activation/proliferation. This CLL-activation effect promoted by the BPs was associated with markers of poor CLL prognosis and required the presence of bystander stromal cells. Functional experiments suggested that this phenomenon involves the release of soluble factors and is increased by cellular contact between stroma and CLL B cells. Since CLL patients often present comorbidities such as osteoporosis and considering the diverse outcomes in both CLL disease progression and CLL response to treatment among patients, illustrating this phenomenon holds potential significance in driving additional investigations.


Assuntos
Leucemia Linfocítica Crônica de Células B , Osteoporose , Humanos , Idoso , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Linfócitos B , Apoptose , Osteoporose/tratamento farmacológico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA