Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076917

RESUMO

Myeloid cells, including neutrophils, monocytes and macrophages, accumulate quickly after ischemic injury in the heart where they play integral roles in the regulation of inflammation and repair. We previously reported that deletion of ß2-adrenergic receptor (ß2AR) in all cells of hematopoietic origin resulted in generalized disruption of immune cell responsiveness to injury, but with unknown impact on myeloid cells specifically. To investigate this, we crossed floxed ß2AR (F/F) mice with myeloid cell-expressing Cre (LysM-Cre) mice to generate myeloid cell-specific ß2AR knockout mice (LB2) and subjected them to myocardial infarction (MI). Via echocardiography and immunohistochemical analyses, LB2 mice displayed better cardiac function and less fibrotic remodeling after MI than the control lines. Despite similar accumulation of myeloid cell subsets in the heart at 1-day post-MI, LB2 mice displayed reduced numbers of Nu by 4 days post-MI, suggesting LB2 hearts have enhanced capacity for Nu efferocytosis. Indeed, bone marrow-derived macrophage (BMDM)-mediated efferocytosis of Nu was enhanced in LB2-versus F/F-derived cells in vitro. Mechanistically, several pro-efferocytosis-related genes were increased in LB2 myeloid cells, with annexin A1 ( Anxa1 ) in particular elevated in several myeloid cell types following MI. Accordingly, shRNA-mediated knockdown of Anxa1 in LB2 bone marrow prior to transplantation into irradiated LB2 mice reduced Mac-induced Nu efferocytosis in vitro and prevented the ameliorative effects of myeloid cell-specific ß2AR deletion on cardiac function and fibrosis following MI in vivo. Altogether, our data reveal a previously unrecognized role for ß2AR in the regulation of myeloid cell-dependent efferocytosis in the heart following injury.

2.
Clin Sci (Lond) ; 137(19): 1513-1531, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37728308

RESUMO

Myeloid cells, including macrophages, play important roles as first responders to cardiac injury and stress. Epidermal growth factor receptor (EGFR) has been identified as a mediator of macrophage responsiveness to select diseases, though its impact on cardiac function or remodeling following acute ischemic injury is unknown. We aimed to define the role of myeloid cell-specific EGFR in the regulation of cardiac function and remodeling following acute myocardial infarction (MI)-induced injury. Floxed EGFR mice were bred with homozygous LysM-Cre (LMC) transgenic mice to yield myeloid-specific EGFR knockout (mKO) mice. Via echocardiography, immunohistochemistry, RNA sequencing and flow cytometry, the impact of myeloid cell-specific EGFR deletion on cardiac structure and function was assessed at baseline and following injury. Compared with LMC controls, myeloid cell-specific EGFR deletion led to an increase in cardiomyocyte hypertrophy at baseline. Bulk RNASeq analysis of isolated cardiac Cd11b+ myeloid cells revealed substantial changes in mKO cell transcripts at baseline, particularly in relation to predicted decreases in neovascularization. In response to myocardial infarction, mKO mice experienced a hastened decline in cardiac function with isolated cardiac Cd11b+ myeloid cells expressing decreased levels of the pro-reparative mediators Vegfa and Il10, which coincided with enhanced cardiac hypertrophy and decreased capillary density. Overall, loss of EGFR qualitatively alters cardiac resident macrophages that promotes a low level of basal stress and a more rapid decrease in cardiac function along with worsened repair following acute ischemic injury.


Assuntos
Receptores ErbB , Infarto do Miocárdio , Camundongos , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Mieloides/metabolismo , Macrófagos/metabolismo , Coração , Infarto do Miocárdio/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Camundongos Endogâmicos C57BL , Remodelação Ventricular/genética
3.
Cardiovasc Drugs Ther ; 37(2): 245-256, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997361

RESUMO

PURPOSE: ß-Adrenergic receptors (ßAR) are essential targets for the treatment of heart failure (HF); however, chronic use of ßAR agonists as positive inotropes to increase contractility in a Gs protein-dependent manner is associated with increased mortality. Alternatively, we previously reported that allosteric modulation of ß2AR with the pepducin intracellular loop (ICL)1-9 increased cardiomyocyte contractility in a ß-arrestin (ßarr)-dependent manner, and subsequently showed that ICL1-9 activates the Ras homolog family member A (RhoA). Here, we aimed to elucidate both the proximal and downstream signaling mediators involved in the promotion of cardiomyocyte contractility in response to ICL1-9. METHODS: We measured adult mouse cardiomyocyte contractility in response to ICL1-9 or isoproterenol (ISO, as a positive control) alone or in the presence of inhibitors of various potential components of ßarr- or RhoA-dependent signaling. We also assessed the contractile effects of ICL1-9 on cardiomyocytes lacking G protein-coupled receptor (GPCR) kinase 2 (GRK2) or 5 (GRK5). RESULTS: Consistent with RhoA activation by ICL1-9, both Rho-associated protein kinase (ROCK) and protein kinase D (PKD) inhibition were able to attenuate ICL1-9-mediated contractility, as was inhibition of myosin light chain kinase (MLCK). While neither GRK2 nor GRK5 deletion impacted ICL1-9-mediated contractility, pertussis toxin attenuated the response, suggesting that ICL1-9 promotes downstream RhoA-dependent signaling in a Gi protein-dependent manner. CONCLUSION: Altogether, our study highlights a novel signaling modality that may offer a new approach to the promotion, or preservation, of cardiac contractility during HF via the allosteric regulation of ß2AR to promote Gi protein/ßarr-dependent activation of RhoA/ROCK/PKD signaling.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Camundongos , Animais , Transdução de Sinais , Proteína Quinase C/metabolismo , Proteína Quinase C/farmacologia , Insuficiência Cardíaca/metabolismo , Contração Miocárdica
4.
Cardiovasc Res ; 118(5): 1276-1288, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33892492

RESUMO

AIMS: Epidermal growth factor receptor (EGFR) is essential to the development of multiple tissues and organs and is a target of cancer therapeutics. Due to the embryonic lethality of global EGFR deletion and conflicting reports of cardiac-overexpressed EGFR mutants, its specific impact on the adult heart, normally or in response to chronic stress, has not been established. Using complimentary genetic strategies to modulate cardiomyocyte-specific EGFR expression, we aim to define its role in the regulation of cardiac function and remodelling. METHODS AND RESULTS: A floxed EGFR mouse model with α-myosin heavy chain-Cre-mediated cardiomyocyte-specific EGFR downregulation (CM-EGFR-KD mice) developed contractile dysfunction by 9 weeks of age, marked by impaired diastolic relaxation, as monitored via echocardiographic, haemodynamic, and isolated cardiomyocyte contractility analyses. This contractile defect was maintained over time without overt cardiac remodelling until 10 months of age, after which the mice ultimately developed severe heart failure and reduced lifespan. Acute downregulation of EGFR in adult floxed EGFR mice with adeno-associated virus 9 (AAV9)-encoded Cre with a cardiac troponin T promoter (AAV9-cTnT-Cre) recapitulated the CM-EGFR-KD phenotype, while AAV9-cTnT-EGFR treatment of adult CM-EGFR-KD mice rescued the phenotype. Notably, chronic administration of the ß-adrenergic receptor agonist isoproterenol effectively and reversibly compensated for the contractile dysfunction in the absence of cardiomyocyte hypertrophy in CM-EGFR-KD mice. Mechanistically, EGFR downregulation reduced the expression of protein phosphatase 2A regulatory subunit Ppp2r3a/PR72, which was associated with decreased phosphorylation of phospholamban and Ca2+ clearance, and whose re-expression via AAV9-cTnT-PR72 rescued the CM-EGFR-KD phenotype. CONCLUSIONS: Altogether, our study highlights a previously unrecognized role for EGFR in maintaining contractile homeostasis under physiologic conditions in the adult heart via regulation of PR72 expression.


Assuntos
Receptores ErbB , Contração Miocárdica , Miócitos Cardíacos , Animais , Dependovirus , Receptores ErbB/genética , Receptores ErbB/metabolismo , Isoproterenol/farmacologia , Camundongos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Troponina T/genética
5.
Cell Signal ; 78: 109846, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33238186

RESUMO

ß1-adrenergic receptor (ß1AR)-mediated transactivation of epidermal growth factor receptor (EGFR) engages downstream signaling events that impact numerous cellular processes including growth and survival. While association of these receptors has been shown to occur basally and be important for relaying transactivation-specific intracellular events, the mechanism by which they do so is unclear and elucidation of which would aid in understanding the consequence of disrupting their interaction. Using fluorescence resonance energy transfer (FRET) and immunoprecipitation (IP) analyses, we evaluated the impact of C-terminal truncations of EGFR on its ability to associate with ß1AR. While loss of the last 230 amino acid C-terminal phosphotyrosine-rich domain did not disrupt the ability of EGFR to associate with ß1AR, truncation of the entire intracellular domain of EGFR resulted in almost complete loss of its interaction with ß1AR, suggesting that either the kinase domain or juxtamembrane domain (JMD) may be required for this association. Treatment with the EGFR antagonist gefitinib did not prevent ß1AR-EGFR association, however, treatment with a palmitoylated peptide encoding the first 20 amino acids of the JMD domain (JMD-A) disrupted ß1AR-EGFR association over time and prevented ß1AR-mediated ERK1/2 phosphorylation, both in general and specifically in association with EGFR. Conversely, neither a mutated JMD-A peptide nor a palmitoylated peptide fragment consisting of the subsequent 18 amino acids of the JMD domain (JMD-B) were capable of doing so. Altogether, the proximal region of the JMD of EGFR is responsible for its association with ß1AR, and its disruption prevents ß1AR-mediated transactivation, thus providing a new tool to study the functional consequences of disrupting ß1AR-EGFR downstream signaling.


Assuntos
Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Peptídeos/química , Peptídeos/genética , Peptídeos/farmacologia , Domínios Proteicos , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/genética
6.
Theranostics ; 8(17): 4664-4678, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279730

RESUMO

Reperfusion as a therapeutic intervention for acute myocardial infarction-induced cardiac injury itself induces further cardiomyocyte death. ß-arrestin (ßarr)-biased ß-adrenergic receptor (ßAR) activation promotes survival signaling responses in vitro; thus, we hypothesize that this pathway can mitigate cardiomyocyte death at the time of reperfusion to better preserve function. However, a lack of efficacious ßarr-biased orthosteric small molecules has prevented investigation into whether this pathway relays protection against ischemic injury in vivo. We recently demonstrated that the pepducin ICL1-9, a small lipidated peptide fragment designed from the first intracellular loop of ß2AR, allosterically engaged pro-survival signaling cascades in a ßarr-dependent manner in vitro. Thus, in this study we tested whether ICL1-9 relays cardioprotection against ischemia/reperfusion (I/R)-induced injury in vivo. Methods: Wild-type (WT) C57BL/6, ß2AR knockout (KO), ßarr1KO and ßarr2KO mice received intracardiac injections of either ICL1-9 or a scrambled control pepducin (Scr) at the time of ischemia (30 min) followed by reperfusion for either 24 h, to assess infarct size and cardiomyocyte death, or 4 weeks, to monitor the impact of ICL1-9 on long-term cardiac structure and function. Neonatal rat ventricular myocytes (NRVM) were used to assess the impact of ICL1-9 versus Scr pepducin on cardiomyocyte survival and mitochondrial superoxide formation in response to either serum deprivation or hypoxia/reoxygenation (H/R) in vitro and to investigate the associated mechanism(s). Results: Intramyocardial injection of ICL1-9 at the time of I/R reduced infarct size, cardiomyocyte death and improved cardiac function in a ß2AR- and ßarr-dependent manner, which led to improved contractile function early and less fibrotic remodeling over time. Mechanistically, ICL1-9 attenuated mitochondrial superoxide production and promoted cardiomyocyte survival in a RhoA/ROCK-dependent manner. RhoA activation could be detected in cardiomyocytes and whole heart up to 24 h post-treatment, demonstrating the stability of ICL1-9 effects on ßarr-dependent ß2AR signaling. Conclusion: Pepducin-based allosteric modulation of ßarr-dependent ß2AR signaling represents a novel therapeutic approach to reduce reperfusion-induced cardiac injury and relay long-term cardiac remodeling benefits.


Assuntos
Lipopeptídeos/administração & dosagem , Receptores Adrenérgicos beta 2/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais , beta-Arrestinas/metabolismo , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Lipopeptídeos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Teóricos , Células Musculares/patologia , Miocárdio/patologia , Ratos , Receptores Adrenérgicos beta 2/deficiência , Superóxidos/análise , Resultado do Tratamento , beta-Arrestinas/deficiência
7.
J Mol Cell Cardiol ; 123: 108-117, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30171848

RESUMO

Increased G protein-coupled receptor kinase (GRK)2 is central to heart failure (HF) pathogenesis, via desensitization of ß-adrenergic receptors and loss of contractile reserve. Since GRK2 has been shown to compromise fatty acid (FA) oxidation, this kinase may link metabolic and contractile defects in HF. The aim of this study was to investigate the mechanistic role of GRK2 in FA metabolism and bioenergetics in the heart. For that purpose, we measured FA uptake and cluster of differentiation (CD)36 expression, phosphorylation, and ubiquitination in mice with cardiac-specific overexpression of GRK2 (TgGRK2) or expression of its c-terminus (GRK2 inhibitor- TgßARKct) or in global heterozygous GRK2 knockout (GRK2+/-) mice. Cellular bioenergetics were also measured in isolated cardiomyocytes following adenoviral delivery of exogenous GRK2, ßARKct, or short hairpin GRK2 (shGRK2). Additionally, CD36 expression and phosphorylation were evaluated following transverse aortic constriction (TAC) in wild type (WT) and GRK2+/- mice. Our results show a 33% ±â€¯0.81 reduction in FA uptake rate, accompanied by 51% ±â€¯0.17 lower CD36 protein, and 70% ±â€¯0.23 and 69% ±â€¯0.18 increases in CD36 phosphorylation and ubiquitination, respectively, in the TgGRK2 mice. Moreover, an in vitro kinase assay suggests that GRK2 directly phosphorylates CD36. In isolated cardiomyocytes, GRK2 overexpression induced a 26% ±â€¯2.21 decrease in maximal respiration, which was enhanced (20% ±â€¯4.02-5.14) with inhibition of the kinase. Importantly, in hearts with systolic dysfunction, notable reductions in CD36 mRNA and protein, as well as a significant increase in CD36 phosphorylation were normalized in the GRK2+/- mice post-TAC. Thus, we propose that GRK2 up-regulation in HF is, at least partly, responsible for reduced FA uptake and oxidation and may be a nodal link between metabolic and contractile defects.


Assuntos
Ácidos Graxos/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/metabolismo , Metabolismo dos Lipídeos , Animais , Biomarcadores , Antígenos CD36/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Quinase 2 de Receptor Acoplado a Proteína G/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Fosforilação
8.
Cell Signal ; 38: 127-133, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28711716

RESUMO

ß-adrenergic receptors (ßAR) regulate numerous functions throughout the body, however G protein-coupled receptor kinase (GRK)-dependent desensitization of ßAR has long been recognized as a maladaptive process in the progression of various disease states. Thus, the development of small molecule inhibitors of GRKs for the study of these processes and as potential therapeutics has been at the forefront of recent research efforts. Via structural and biochemical analyses, the selective serotonin reuptake inhibitor (SSRI) paroxetine was identified as a GRK2 inhibitor that enhances ßAR-dependent cardiomyocyte and cardiac contractility and reverses cardiac dysfunction and myocardial ßAR expression in mouse models of heart failure. Despite these functional outcomes, consistent with diminished ßAR desensitization, the proximal ßAR signaling mechanisms sensitive to paroxetine have not been reported. In this study, we aimed to determine whether paroxetine prevents classic ßAR desensitization-related signaling mechanisms at a molecular level. Therefore, via immunoblotting, radioligand binding, fluorescence resonance energy transfer (FRET) and microscopy assays, we have performed an assessment of the effect of paroxetine on proximal ßAR signaling responses. Indeed, paroxetine treatment inhibited ligand-induced ß2AR phosphorylation in a concentration-dependent manner. Additionally, for both ß1AR and ß2AR, paroxetine decreased ligand-induced ßarrestin2 recruitment and subsequent receptor internalization. Thus, paroxetine inhibits ßAR desensitization mechanisms consistent with GRK2 inhibition and provides a useful pharmacological tool for studying these proximal GPCR signaling responses.


Assuntos
Paroxetina/farmacologia , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Agonistas Adrenérgicos beta/farmacologia , Linhagem Celular , Endocitose/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , beta-Arrestina 2/metabolismo
9.
Clin Sci (Lond) ; 130(22): 2017-2027, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27589993

RESUMO

Vasopressin type 1A receptor (V1AR) expression is elevated in chronic human heart failure (HF) and contributes to cardiac dysfunction in animal models, in part via reduced ß-adrenergic receptor (ßAR) responsiveness. Although cardiac V1AR overexpression and V1AR stimulation are each sufficient to decrease ßAR activity, it is unknown whether V1AR inhibition conversely augments ßAR responsiveness. Further, although V1AR has been shown to contribute to chronic progression of HF, its impact on cardiac function following acute ischaemic injury has not been reported. Using V1AR knockout (V1AR KO) mice we assessed the impact of V1AR deletion on cardiac contractility at baseline and following ischaemic injury, ßAR sensitivity and cardiomyocyte responsiveness to ßAR stimulation. Strikingly, baseline cardiac contractility was enhanced in V1AR KO mice and they experienced a greater loss in contractile function than control mice following acute ischaemic injury, although the absolute levels of cardiac dysfunction and survival rates did not differ. Enhanced cardiac contractility in V1AR KO mice was associated with augmented ß-blocker sensitivity, suggesting increased basal ßAR activity, and indeed levels of left ventricular cAMP, as well as phospholamban (PLB) and cardiac troponin I (cTnI) phosphorylation were elevated compared with control mice. At the cellular level, myocytes isolated from V1AR KO mice demonstrated increased responsiveness to ßAR stimulation consistent with the finding that acute pharmacological V1AR inhibition enhanced ßAR-mediated contractility in control myocytes. Therefore, although V1AR deletion does not protect the heart from the rapid development of cardiac dysfunction following acute ischaemic injury, its effects on ßAR activity suggest that acute V1AR inhibition could be utilized to promote myocyte contractile performance.

10.
Circulation ; 134(2): 153-67, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27364164

RESUMO

BACKGROUND: Immune cell-mediated inflammation is an essential process for mounting a repair response after myocardial infarction (MI). The sympathetic nervous system is known to regulate immune system function through ß-adrenergic receptors (ßARs); however, their role in regulating immune cell responses to acute cardiac injury is unknown. METHODS: Wild-type (WT) mice were irradiated followed by isoform-specific ßAR knockout (ßARKO) or WT bone-marrow transplantation (BMT) and after full reconstitution underwent MI surgery. Survival was monitored over time, and alterations in immune cell infiltration after MI were examined through immunohistochemistry. Alterations in splenic function were identified through the investigation of altered adhesion receptor expression. RESULTS: ß2ARKO BMT mice displayed 100% mortality resulting from cardiac rupture within 12 days after MI compared with ≈20% mortality in WT BMT mice. ß2ARKO BMT mice displayed severely reduced post-MI cardiac infiltration of leukocytes with reciprocally enhanced splenic retention of the same immune cell populations. Splenic retention of the leukocytes was associated with an increase in vascular cell adhesion molecule-1 expression, which itself was regulated via ß-arrestin-dependent ß2AR signaling. Furthermore, vascular cell adhesion molecule-1 expression in both mouse and human macrophages was sensitive to ß2AR activity, and spleens from human tissue donors treated with ß-blocker showed enhanced vascular cell adhesion molecule-1 expression. The impairments in splenic retention and cardiac infiltration of leukocytes after MI were restored to WT levels via lentiviral-mediated re-expression of ß2AR in ß2ARKO bone marrow before transplantation, which also resulted in post-MI survival rates comparable to those in WT BMT mice. CONCLUSIONS: Immune cell-expressed ß2AR plays an essential role in regulating the early inflammatory repair response to acute myocardial injury by facilitating cardiac leukocyte infiltration.


Assuntos
Ruptura Cardíaca/etiologia , Leucócitos/metabolismo , Infarto do Miocárdio/complicações , Receptores Adrenérgicos beta 2/fisiologia , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Vetores Genéticos/uso terapêutico , Humanos , Macrófagos/metabolismo , Masculino , Metoprolol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Quimera por Radiação , Receptores Adrenérgicos beta 2/deficiência , Receptores Adrenérgicos beta 2/genética , Proteínas Recombinantes de Fusão/metabolismo , Baço/metabolismo , Baço/patologia , Esplenectomia , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Proc Natl Acad Sci U S A ; 113(28): E4107-16, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354517

RESUMO

ß-adrenergic receptors (ßARs) are critical regulators of acute cardiovascular physiology. In response to elevated catecholamine stimulation during development of congestive heart failure (CHF), chronic activation of Gs-dependent ß1AR and Gi-dependent ß2AR pathways leads to enhanced cardiomyocyte death, reduced ß1AR expression, and decreased inotropic reserve. ß-blockers act to block excessive catecholamine stimulation of ßARs to decrease cellular apoptotic signaling and normalize ß1AR expression and inotropy. Whereas these actions reduce cardiac remodeling and mortality outcomes, the effects are not sustained. Converse to G-protein-dependent signaling, ß-arrestin-dependent signaling promotes cardiomyocyte survival. Given that ß2AR expression is unaltered in CHF, a ß-arrestin-biased agonist that operates through the ß2AR represents a potentially useful therapeutic approach. Carvedilol, a currently prescribed nonselective ß-blocker, has been classified as a ß-arrestin-biased agonist that can inhibit basal signaling from ßARs and also stimulate cell survival signaling pathways. To understand the relative contribution of ß-arrestin bias to the efficacy of select ß-blockers, a specific ß-arrestin-biased pepducin for the ß2AR, intracellular loop (ICL)1-9, was used to decouple ß-arrestin-biased signaling from occupation of the orthosteric ligand-binding pocket. With similar efficacy to carvedilol, ICL1-9 was able to promote ß2AR phosphorylation, ß-arrestin recruitment, ß2AR internalization, and ß-arrestin-biased signaling. Interestingly, ICL1-9 was also able to induce ß2AR- and ß-arrestin-dependent and Ca(2+)-independent contractility in primary adult murine cardiomyocytes, whereas carvedilol had no efficacy. Thus, ICL1-9 is an effective tool to access a pharmacological profile stimulating cardioprotective signaling and inotropic effects through the ß2AR and serves as a model for the next generation of cardiovascular drug development.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carbazóis/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Lipopeptídeos/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Propanolaminas/farmacologia , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Carbazóis/uso terapêutico , Carvedilol , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Lipopeptídeos/uso terapêutico , Camundongos , Cultura Primária de Células , Propanolaminas/uso terapêutico , Conformação Proteica/efeitos dos fármacos , beta-Arrestinas/agonistas
12.
Mol Pharmacol ; 88(2): 265-72, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25972448

RESUMO

Emerging evidence indicates the involvement of GPR55 and its proposed endogenous ligand, lysophosphatidylinositol (LPI), in nociception, yet their role in central pain processing has not been explored. Using Ca(2+) imaging, we show here that LPI elicits concentration-dependent and GPR55-mediated increases in intracellular Ca(2+) levels in dissociated rat periaqueductal gray (PAG) neurons, which express GPR55 mRNA. This effect is mediated by Ca(2+) release from the endoplasmic reticulum via inositol 1,4,5-trisphosphate receptors and by Ca(2+) entry via P/Q-type of voltage-gated Ca(2+) channels. Moreover, LPI depolarizes PAG neurons and upon intra-PAG microinjection, reduces nociceptive threshold in the hot-plate test. Both these effects are dependent on GPR55 activation, because they are abolished by pretreatment with ML-193 [N-(4-(N-(3,4-dimethylisoxazol-5-yl)sulfamoyl)-phenyl)-6,8-dimethyl-2-(pyridin-2-yl)quinoline-4-carboxamide], a selective GPR55 antagonist. Thus, we provide the first pharmacological evidence that GPR55 activation at central levels is pronociceptive, suggesting that interfering with GPR55 signaling in the PAG may promote analgesia.


Assuntos
Cálcio/metabolismo , Lisofosfolipídeos/farmacologia , Percepção da Dor , Substância Cinzenta Periaquedutal/fisiologia , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
13.
Am J Physiol Heart Circ Physiol ; 308(4): H316-30, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25485901

RESUMO

Chronic stimulation of ß-adrenergic receptors (ßAR) can promote survival signaling via transactivation of epidermal growth factor receptor (EGFR) but ultimately alters cardiac structure and contractility over time, in part via enhanced cytokine signaling. We hypothesized that chronic catecholamine signaling will have a temporal impact on cardiac transcript expression in vivo, in particular cytokines, and that EGFR transactivation plays a role in this process. C57BL/6 mice underwent infusion with vehicle or isoproterenol (Iso)±gefitinib (Gef) for 1 or 2 wk. Cardiac contractility decreased following 2 wk of Iso treatment, while cardiac hypertrophy, fibrosis, and apoptosis were enhanced at both timepoints. Inclusion of Gef preserved contractility, blocked Iso-induced apoptosis, and prevented hypertrophy at the 2-wk timepoint, but caused fibrosis on its own. RNAseq analysis revealed hundreds of cardiac transcripts altered by Iso at each timepoint with subsequent RT-quantitative PCR validation confirming distinct temporal patterns of transcript regulation, including those involved in cardiac remodeling and survival signaling, as well as numerous cytokines. Although Gef infusion alone did not significantly alter cytokine expression, it abrogated the Iso-mediated changes in a majority of the ßAR-sensitive cytokines, including CCL2 and TNF-α. Additionally, the impact of ßAR-dependent EGFR transactivation on the acute regulation of cytokine transcript expression was assessed in isolated cardiomyocytes and in cardiac fibroblasts, where the majority of Iso-dependent, and EGFR-sensitive, changes in cytokines occurred. Overall, coincident with changes in cardiac structure and contractility, ßAR stimulation dynamically alters cardiac transcript expression over time, including numerous cytokines that are regulated via EGFR-dependent signaling.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Cardiomegalia/metabolismo , Quimiocina CCL2/metabolismo , Isoproterenol/farmacologia , Miócitos Cardíacos/metabolismo , Quinazolinas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose , Cardiomegalia/fisiopatologia , Células Cultivadas , Quimiocina CCL2/genética , Receptores ErbB/antagonistas & inibidores , Fibrose/metabolismo , Fibrose/fisiopatologia , Gefitinibe , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Remodelação Ventricular
14.
Circulation ; 130(20): 1800-11, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25205804

RESUMO

BACKGROUND: Enhanced arginine vasopressin levels are associated with increased mortality during end-stage human heart failure, and cardiac arginine vasopressin type 1A receptor (V1AR) expression becomes increased. Additionally, mice with cardiac-restricted V1AR overexpression develop cardiomyopathy and decreased ß-adrenergic receptor (ßAR) responsiveness. This led us to hypothesize that V1AR signaling regulates ßAR responsiveness and in doing so contributes to development of heart failure. METHODS AND RESULTS: Transaortic constriction resulted in decreased cardiac function and ßAR density and increased cardiac V1AR expression, effects reversed by a V1AR-selective antagonist. Molecularly, V1AR stimulation led to decreased ßAR ligand affinity, as well as ßAR-induced Ca(2+) mobilization and cAMP generation in isolated adult cardiomyocytes, effects recapitulated via ex vivo Langendorff analysis. V1AR-mediated regulation of ßAR responsiveness was demonstrated to occur in a previously unrecognized Gq protein-independent/G protein receptor kinase-dependent manner. CONCLUSIONS: This newly discovered relationship between cardiac V1AR and ßAR may be informative for the treatment of patients with acute decompensated heart failure and elevated arginine vasopressin.


Assuntos
Cardiomiopatia Hipertrófica/fisiopatologia , Contração Miocárdica/fisiologia , Receptores Adrenérgicos beta/fisiologia , Receptores de Vasopressinas/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Arginina Vasopressina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cardiomiopatia Hipertrófica/complicações , Gatos , Linhagem Celular Tumoral , Colforsina/farmacologia , AMP Cíclico/biossíntese , Quinases de Receptores Acoplados a Proteína G/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Genes Reporter , Células HEK293 , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Indóis/farmacologia , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Contração Miocárdica/efeitos dos fármacos , Pirrolidinas/farmacologia , Receptores de Vasopressinas/biossíntese , Receptores de Vasopressinas/genética , Proteínas Recombinantes de Fusão/metabolismo , Rolipram/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos
15.
PLoS One ; 9(6): e99195, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901703

RESUMO

ß-adrenergic receptor (ßAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute ßAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the ßAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib), including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, ßAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Miocárdio/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptores Adrenérgicos beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Animais , Feminino , Gefitinibe , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Adrenérgicos beta/química
16.
Pharmacol Res Perspect ; 2(1)2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24683488

RESUMO

Label-free systems for the agnostic assessment of cellular responses to receptor stimulation have been shown to provide a sensitive method to dissect receptor signaling. ß-adenergic receptors (ßAR) are important regulators of normal and pathologic cardiac function and are expressed in cardiomyocytes as well as cardiac fibroblasts, where relatively fewer studies have explored their signaling responses. Using label-free whole cell dynamic mass redistribution (DMR) assays we investigated the response patterns to stimulation of endogenous ßAR in primary neonatal rat cardiac fibroblasts (NRCF). Catecholamine stimulation of the cells induced a negative DMR deflection resulting in a concentration-dependent pharmacological response that was competitively blocked by ßAR blockade and non-competitively blocked by irreversible uncoupling of Gs proteins. Pharmacological profiling of subtype-selective ßAR agonists and antagonists revealed a dominant role of ß2AR in mediating the DMR responses, consistent with the relative expression levels of ß2AR and ß1AR in NRCF. Additionally, ßAR-mediated cAMP generation was assessed via a fluorescence biosensor, revealing similar kinetics between DMR responses and cAMP generation. As such, ßAR-dependent DMR responses were enhanced via inhibition of cAMP degradation, as well as dynamin-mediated receptor internalization. Finally, we assessed G protein-independent ßAR signaling through epidermal growth factor receptor (EGFR). While inhibition of EGFR reduced the DMR response to ßAR stimulation, our results demonstrate that G protein-dependent signaling produces a majority of the biological response to ßAR stimulation in NRCF. Altogether, measurement of DMR responses in primary cardiac fibroblasts provides a sensitive readout for investigating endogenous ßAR signaling via both G protein-dependent and -independent pathways.

17.
J Mol Cell Cardiol ; 72: 39-51, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24566221

RESUMO

ß-Adrenergic receptor (ßAR)-mediated transactivation of epidermal growth factor receptor (EGFR) has been shown to relay pro-survival effects via unknown mechanisms. We hypothesized that acute ßAR-mediated EGFR transactivation in the heart promotes differential subcellular activation of ERK1/2 and Akt, promoting cell survival through modulation of apoptosis. C57BL/6 mice underwent acute i.p. injection with isoproterenol (ISO)±AG 1478 (EGFR antagonist) to assess the impact of ßAR-mediated EGFR transactivation on the phosphorylation of ERK1/2 (P-ERK1/2) and Akt (P-Akt) in distinct cardiac subcellular fractions. Increased P-ERK1/2 and P-Akt were observed in cytosolic, plasma membrane and nuclear fractions following ISO stimulation. Whereas the P-ERK1/2 response was EGFR-sensitive in all fractions, the P-Akt response was EGFR-sensitive only in the plasma membrane and nucleus, results confirmed in primary rat neonatal cardiomyocytes (RNCM). ßAR-mediated EGFR-transactivation also decreased apoptosis in serum-depleted RNCM, as measured via TUNEL as well as caspase 3 activity/cleavage, which were sensitive to the inhibition of either ERK1/2 (PD184352) or Akt (LY-294002) signaling. Caspase 3 activity/cleavage was also sensitive to the inhibition of transcription, which, with an increase in nuclear P-ERK1/2 and P-Akt in response to ISO, suggested that ßAR-mediated EGFR transactivation may regulate apoptotic gene transcription. An Apoptosis PCR Array identified tnfsf10 (TRAIL) to be altered by ISO in an EGFR-sensitive manner, results confirmed via RT-PCR and ELISA measurement of both membrane-bound and soluble cardiomyocyte TRAIL levels. ßAR-mediated EGFR transactivation induces differential subcellular activation of ERK1/2 and Akt leading to increased cell survival through the modulation of caspase 3 activity and apoptotic gene expression in cardiomyocytes.


Assuntos
Receptores ErbB/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Adrenérgicos beta/genética , Agonistas Adrenérgicos beta/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Gatos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Isoproterenol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Tirfostinas/farmacologia
18.
J Biol Chem ; 288(31): 22481-92, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23814062

RESUMO

The L-α-lysophosphatidylinositol (LPI)-sensitive receptor GPR55 is coupled to Ca(2+) signaling. Low levels of GPR55 expression in the heart have been reported. Similar to other G protein-coupled receptors involved in cardiac function, GPR55 may be expressed both at the sarcolemma and intracellularly. Thus, to explore the role of GPR55 in cardiomyocytes, we used calcium and voltage imaging and extracellular administration or intracellular microinjection of GPR55 ligands. We provide the first evidence that, in cultured neonatal ventricular myocytes, LPI triggers distinct signaling pathways via GPR55, depending on receptor localization. GPR55 activation at the sarcolemma elicits, on one hand, Ca(2+) entry via L-type Ca(2+) channels and, on the other, inositol 1,4,5-trisphosphate-dependent Ca(2+) release. The latter signal is further amplified by Ca(2+)-induced Ca(2+) release via ryanodine receptors. Conversely, activation of GPR55 at the membrane of intracellular organelles promotes Ca(2+) release from acidic-like Ca(2+) stores via the endolysosomal NAADP-sensitive two-pore channels. This response is similarly enhanced by Ca(2+)-induced Ca(2+) release via ryanodine receptors. Extracellularly applied LPI produces Ca(2+)-independent membrane depolarization, whereas the Ca(2+) signal induced by intracellular microinjection of LPI converges to hyperpolarization of the sarcolemma. Collectively, our findings point to GPR55 as a novel G protein-coupled receptor regulating cardiac function at two cellular sites. This work may serve as a platform for future studies exploring the potential of GPR55 as a therapeutic target in cardiac disorders.


Assuntos
Miócitos Cardíacos/metabolismo , Receptores de Canabinoides/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Organelas/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Mol Pharmacol ; 76(6): 1341-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19759354

RESUMO

The P2Y14 receptor was initially identified as a G protein-coupled receptor activated by UDP-glucose and other nucleotide sugars. We have developed several cell lines that stably express the human P2Y14 receptor, allowing facile examination of its coupling to native Gi family G proteins and their associated downstream signaling pathways (J Pharmacol Exp Ther 330:162-168, 2009). In the current study, we examined P2Y14 receptor-dependent inhibition of cyclic AMP accumulation in human embryonic kidney (HEK) 293, C6 glioma, and Chinese hamster ovary (CHO) cells stably expressing this receptor. Not only was the human P2Y14 receptor activated by UDP-glucose, but it also was activated by UDP. The apparent efficacies of UDP and UDP-glucose were similar, and the EC50 values (74, 33, and 29 nM) for UDP-dependent activation of the P2Y14 receptor in HEK293, CHO, and C6 glioma cells, respectively, were similar to the EC50 values (323, 132, and 72 nM) observed for UDP-glucose. UDP and UDP-glucose also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in P2Y14 receptor-expressing HEK293 cells but not in wild-type HEK293 cells. A series of analogs of UDP were potent P2Y14 receptor agonists, but the naturally occurring nucleoside diphosphates, CDP, GDP, and ADP exhibited agonist potencies over 100-fold less than that observed with UDP. Two UDP analogs were identified that selectively activate the P2Y14 receptor over the UDP-activated P2Y6 receptor, and these molecules stimulated phosphorylation of ERK1/2 in differentiated human HL-60 promyeloleukemia cells, which natively express the P2Y14 receptor but had no effect in wild-type HL-60 cells, which do not express the receptor. We conclude that UDP is an important cognate agonist of the human P2Y14 receptor.


Assuntos
Inibidores de Adenilil Ciclases , Proteínas de Ligação ao GTP/fisiologia , Agonistas do Receptor Purinérgico P2 , Difosfato de Uridina/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Células CHO , Linhagem Celular , Colforsina/farmacologia , Cricetinae , Cricetulus , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Células HL-60 , Humanos , Receptores Purinérgicos P2 , Transdução de Sinais/efeitos dos fármacos , Uridina Difosfato Glucose/farmacologia
20.
Bioconjug Chem ; 20(8): 1650-9, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19572637

RESUMO

The P2Y(14) receptor is a G protein-coupled receptor activated by uridine-5'-diphosphoglucose and other nucleotide sugars that modulates immune function. Covalent conjugation of P2Y(14) receptor agonists to PAMAM (polyamidoamine) dendrimers enhanced pharmacological activity. Uridine-5'-diphosphoglucuronic acid (UDPGA) and its ethylenediamine adduct were suitable functionalized congeners for coupling to several generations (G2.5-6) of dendrimers (both terminal carboxy and amino). Prosthetic groups, including biotin for avidin complexation, a chelating group for metal complexation (and eventual magnetic resonance imaging), and a fluorescent moiety, also were attached with the eventual goals of molecular detection and characterization of the P2Y(14) receptor. The activities of conjugates were assayed in HEK293 cells stably expressing the human P2Y(14) receptor. A G3 PAMAM conjugate containing 20 bound nucleotide moieties (UDPGA) was 100-fold more potent (EC(50) 2.4 nM) than the native agonist uridine-5'-diphosphoglucose. A molecular model of this conjugate docked in the human P2Y(14) receptor showed that the nucleotide-substituted branches could extend far beyond the dimensions of the receptor and be available for multivalent docking to receptor aggregates. Larger dendrimer carriers and greater loading favored higher potency. A similar conjugate of G6 with 147 out of 256 amino groups substituted with UDPGA displayed an EC(50) value of 0.8 nM. Thus, biological activity was either retained or dramatically enhanced in the multivalent dendrimer conjugates in comparison with monomeric P2Y(14) receptor agonists, depending on size, degree of substitution, terminal functionality, and attached prosthetic groups.


Assuntos
Dendrímeros/farmacologia , Poliaminas/farmacologia , Agonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato Ácido Glucurônico/farmacologia , Células Cultivadas , Dendrímeros/química , Humanos , Conformação Molecular , Poliaminas/química , Agonistas do Receptor Purinérgico P2/química , Receptores Purinérgicos P2/química , Relação Estrutura-Atividade , Uridina Difosfato Ácido Glucurônico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...