Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4096, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750019

RESUMO

The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKß independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Succinatos , Animais , Humanos , Terapia Viral Oncolítica/métodos , Succinatos/farmacologia , Camundongos , Linhagem Celular Tumoral , Interferon Tipo I/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias do Colo/terapia , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Antivirais/farmacologia , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Inflamação/tratamento farmacológico , Feminino , Vírus da Estomatite Vesicular Indiana/fisiologia , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
J Clin Immunol ; 44(2): 56, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277122

RESUMO

Varicella zoster virus (VZV) is a neurotropic alphaherpesvirus exclusively infecting humans, causing two distinct pathologies: varicella (chickenpox) upon primary infection and herpes zoster (shingles) following reactivation. In susceptible individuals, VZV can give rise to more severe clinical manifestations, including disseminated infection, pneumonitis, encephalitis, and vasculopathy with stroke. Here, we describe a 3-year-old boy in whom varicella followed a complicated course with thrombocytopenia, hemorrhagic and necrotic lesions, pneumonitis, and intermittent encephalopathy. Hemophagocytic lymphohistiocytosis (HLH) was strongly suspected and as the condition deteriorated, HLH therapy was initiated. Although the clinical condition improved, longstanding hemophagocytosis followed despite therapy. We found that the patient carries a rare monoallelic variant in autocrine motility factor receptor (AMFR), encoding a ubiquitin ligase involved in innate cytosolic DNA sensing and interferon (IFN) production through the cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) pathway. Peripheral blood mononuclear cells (PBMCs) from the patient exhibited impaired signaling downstream of STING in response dsDNA and 2'3'-cGAMP, agonists of cGAS and STING, respectively, and fibroblasts from the patient showed impaired type I IFN responses and significantly increased VZV replication. Overexpression of the variant AMFR R594C resulted in decreased K27-linked STING ubiquitination compared to WT AMFR. Moreover, ImageStream technology revealed reduced STING trafficking from ER to Golgi in cells expressing the patient AMFR R594C variant. This was supported by a dose-dependent dominant negative effect of expression of the patient AMFR variant as measured by IFN-ß reporter gene assay. Finally, lentiviral transduction with WT AMFR partially reconstituted 2'3'-cGAMP-induced STING-mediated signaling and ISG expression in patient PBMCs. This work links defective AMFR-STING signaling to severe VZV disease and hyperinflammation and suggests a direct role for cGAS-STING in the control of viral infections in humans. In conclusion, we describe a novel genetic etiology of severe VZV disease in childhood, also representing the first inborn error of immunity related to a defect in the cGAS-STING pathway.


Assuntos
Varicela , Herpes Zoster , Interferon Tipo I , Linfo-Histiocitose Hemofagocítica , Pneumonia , Pré-Escolar , Humanos , Herpesvirus Humano 3/genética , Imunidade Inata , Leucócitos Mononucleares/metabolismo , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Receptores do Fator Autócrino de Motilidade , Ubiquitina-Proteína Ligases/genética , Masculino
3.
J Biol Chem ; 299(6): 104749, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100284

RESUMO

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy. We find that the EPAC-selective inhibitor, ESI-09, provides robust protection against a variety of viruses, including SARS-CoV-2 and Vaccinia (VACV)-an orthopox virus from the same family as mpox. We show, using a series of immunofluorescence experiments, that ESI-09 remodels the actin cytoskeleton through Rac1/Cdc42 GTPases and the Arp2/3 complex, impairing internalization of viruses that use clathrin-mediated endocytosis (e.g. VSV) or micropinocytosis (e.g. VACV). Additionally, we find that ESI-09 disrupts syncytia formation and inhibits cell-to-cell transmission of viruses such as measles and VACV. When administered to immune-deficient mice in an intranasal challenge model, ESI-09 protects mice from lethal doses of VACV and prevents formation of pox lesions. Altogether, our finding shows that EPAC antagonists such as ESI-09 are promising candidates for broad-spectrum antiviral therapy that can aid in the fight against ongoing and future viral outbreaks.


Assuntos
Antivirais , COVID-19 , Mpox , Vacínia , Animais , Camundongos , Antivirais/farmacologia , Mpox/tratamento farmacológico , SARS-CoV-2/efeitos dos fármacos , Vacínia/tratamento farmacológico , Vaccinia virus/efeitos dos fármacos
4.
Sci Signal ; 15(762): eabo7940, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445937

RESUMO

The lipid kinase VPS34 orchestrates autophagy, endocytosis, and metabolism and is implicated in cancer and metabolic disease. The proximal tubule in the kidney is a key metabolic organ that controls reabsorption of nutrients such as fatty acids, amino acids, sugars, and proteins. Here, by combining metabolomics, proteomics, and phosphoproteomics analyses with functional and superresolution imaging assays of mice with an inducible deficiency in proximal tubular cells, we revealed that VPS34 controlled the metabolome of the proximal tubule. In addition to inhibiting pinocytosis and autophagy, VPS34 depletion induced membrane exocytosis and reduced the abundance of the retromer complex necessary for proper membrane recycling and lipid retention, leading to a loss of fuel and biomass. Integration of omics data into a kidney cell metabolomic model demonstrated that VPS34 deficiency increased ß-oxidation, reduced gluconeogenesis, and enhanced the use of glutamine for energy consumption. Furthermore, the omics datasets revealed that VPS34 depletion triggered an antiviral response that included a decrease in the abundance of apically localized virus receptors such as ACE2. VPS34 inhibition abrogated SARS-CoV-2 infection in human kidney organoids and cultured proximal tubule cells in a glutamine-dependent manner. Thus, our results demonstrate that VPS34 adjusts endocytosis, nutrient transport, autophagy, and antiviral responses in proximal tubule cells in the kidney.


Assuntos
COVID-19 , Glutamina , Humanos , Animais , Camundongos , SARS-CoV-2 , Rim , Nutrientes , Antivirais , Lipídeos
5.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526097

RESUMO

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Imidazóis , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Animais , Antivirais/farmacologia , Imidazóis/farmacologia , Camundongos , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Estados Unidos , United States Food and Drug Administration
6.
ACS Infect Dis ; 7(11): 3034-3051, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34658235

RESUMO

The antimicrobial medication malarone (atovaquone/proguanil) is used as a fixed-dose combination for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travelers. It is an inexpensive, efficacious, and safe drug frequently prescribed around the world. Following anecdotal evidence from 17 patients in the provinces of Quebec and Ontario, Canada, suggesting that malarone/atovaquone may present some benefits in protecting against COVID-19, we sought to examine its antiviral potential in limiting the replication of SARS-CoV-2 in cellular models of infection. In VeroE6 expressing human TMPRSS2 and human lung Calu-3 epithelial cells, we show that the active compound atovaquone at micromolar concentrations potently inhibits the replication of SARS-CoV-2 and other variants of concern including the alpha, beta, and delta variants. Importantly, atovaquone retained its full antiviral activity in a primary human airway epithelium cell culture model. Mechanistically, we demonstrate that the atovaquone antiviral activity against SARS-CoV-2 is partially dependent on the expression of TMPRSS2 and that the drug can disrupt the interaction of the spike protein with the viral receptor, ACE2. Additionally, spike-mediated membrane fusion was also reduced in the presence of atovaquone. In the United States, two clinical trials of atovaquone administered alone or in combination with azithromycin were initiated in 2020. While we await the results of these trials, our findings in cellular infection models demonstrate that atovaquone is a potent antiviral FDA-approved drug against SARS-CoV-2 and other variants of concern in vitro.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Atovaquona/farmacologia , Humanos , Estados Unidos
7.
J Infect Dis ; 224(12): 2122-2132, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33974706

RESUMO

BACKGROUND: Infection with varicella zoster virus (VZV) may involve different central nervous system (CNS) manifestations, including meningitis, encephalitis, and vasculitis. In cases in which otherwise healthy individuals are affected, an inborn error of immunity may underlie increased susceptibility or severity of infection. METHODS: We collected a cohort of 17 adults who experienced VZV encephalitis and performed whole exome sequencing. Patient peripheral blood mononuclear cells were infected with VZV, and innate antiviral interferon (IFN) and cytokine responses as well as viral replication were evaluated. Data were analyzed by Mann-Whitney U test. RESULTS: We identified a total of 21 different potentially disease-causing variants in a total of 13 of the 17 patients included. These gene variants were within 2 major functional clusters: (1) innate viral sensors and immune pathways and (2) autophagy pathways. Antiviral IFN and cytokine responses were abnormal in the majority of patients, whereas viral replication was increased in only 2 of 17 patients. CONCLUSIONS: This study identifies a list of variants of pathogenic potential, which may serve as a platform for generating hypotheses for future studies addressing genetic and immunological factors associated with susceptibility to VZV encephalitis. These data, taken together, suggest that disturbances in innate sensing and autophagy pathways may predispose to VZV encephalitis.


Assuntos
Citocinas , Encefalite por Varicela Zoster/diagnóstico , Herpesvirus Humano 3/genética , Imunidade Inata , Adulto , Idoso , Antivirais/uso terapêutico , Autofagia , Pré-Escolar , Citocinas/imunologia , Encefalite por Varicela Zoster/genética , Encefalite por Varicela Zoster/imunologia , Variação Genética , Herpes Zoster , Humanos , Leucócitos Mononucleares , Pessoa de Meia-Idade , Sequenciamento do Exoma
8.
Front Immunol ; 11: 1606, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695122

RESUMO

Coronavirus disease-19 (COVID-19) describes a set of symptoms that develop following infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whilst COVID-19 disease is most serious in patients with significant co-morbidities, the reason for healthy individuals succumbing to fulminant infection is largely unexplained. In this review, we discuss the most recent findings in terms of clinical features and the host immune response, and suggest candidate immune pathways that may be compromised in otherwise healthy individuals with fulminating COVID-19. On the basis of this early knowledge we reason a potential genetic effect on host immune response pathways leading to increased susceptibility to SARS-CoV-2 infection. Understanding these pathways may help not only in unraveling disease pathogenesis, but also in suggesting targets for therapy and prophylaxis. Importantly such insight should instruct efforts to identify those at increased risk in order to institute preventative measures, such as prophylactic medication and/or vaccination, when such opportunities arise in the later phases of the current pandemic or during future similar pandemics.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Predisposição Genética para Doença , Pandemias , Pneumonia Viral , Betacoronavirus/genética , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Humanos , Pneumonia Viral/epidemiologia , Pneumonia Viral/genética , Pneumonia Viral/imunologia , SARS-CoV-2 , Índice de Gravidade de Doença
9.
Nat Med ; 25(12): 1873-1884, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31806906

RESUMO

Herpes simplex virus-1 (HSV-1) encephalitis (HSE) is typically sporadic. Inborn errors of TLR3- and DBR1-mediated central nervous system cell-intrinsic immunity can account for forebrain and brainstem HSE, respectively. We report five unrelated patients with forebrain HSE, each heterozygous for one of four rare variants of SNORA31, encoding a small nucleolar RNA of the H/ACA class that are predicted to direct the isomerization of uridine residues to pseudouridine in small nuclear RNA and ribosomal RNA. We show that CRISPR/Cas9-introduced bi- and monoallelic SNORA31 deletions render human pluripotent stem cell (hPSC)-derived cortical neurons susceptible to HSV-1. Accordingly, SNORA31-mutated patient hPSC-derived cortical neurons are susceptible to HSV-1, like those from TLR3- or STAT1-deficient patients. Exogenous interferon (IFN)-ß renders SNORA31- and TLR3- but not STAT1-mutated neurons resistant to HSV-1. Finally, transcriptome analysis of SNORA31-mutated neurons revealed normal responses to TLR3 and IFN-α/ß stimulation but abnormal responses to HSV-1. Human SNORA31 thus controls central nervous system neuron-intrinsic immunity to HSV-1 by a distinctive mechanism.


Assuntos
Encefalite por Herpes Simples/genética , Herpesvirus Humano 1/genética , Neurônios/imunologia , RNA Nucleolar Pequeno/genética , Adulto , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Pré-Escolar , Encefalite por Herpes Simples/imunologia , Encefalite por Herpes Simples/patologia , Encefalite por Herpes Simples/virologia , Feminino , Predisposição Genética para Doença , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Imunidade/genética , Lactente , Masculino , Metagenoma/genética , Metagenoma/imunologia , Pessoa de Meia-Idade , Neurônios/virologia , RNA Nucleolar Pequeno/imunologia
10.
Genes Immun ; 20(3): 214-223, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29728610

RESUMO

Recently, deficiency in the cytosolic DNA sensor RNA Polymerase III was described in children with severe primary varicella-zoster virus (VZV) infection in the CNS and lungs. In the present study we examined adult patients with VZV CNS infection caused by viral reactivation. By whole exome sequencing we identified mutations in POL III genes in two of eight patients. These mutations were located in the coding regions of the subunits POLR3A and POLR3E. In functional assays, we found impaired expression of antiviral and inflammatory cytokines in response to the POL III agonist Poly(dA:dT) as well as increased viral replication in patient cells compared to controls. Altogether, this study provides significant extension on the current knowledge on susceptibility to VZV infection by demonstrating mutations in POL III genes associated with impaired immunological sensing of AT-rich DNA in adult patients with VZV CNS infection.


Assuntos
RNA Polimerase III/genética , Infecção pelo Vírus da Varicela-Zoster/genética , Adulto , Idoso , Células Cultivadas , Citocinas/metabolismo , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Monócitos/imunologia , Monócitos/virologia , Mutação , RNA Polimerase III/metabolismo , Infecção pelo Vírus da Varicela-Zoster/imunologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Replicação Viral
11.
Neurol Neuroimmunol Neuroinflamm ; 5(6): e500, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30211253

RESUMO

OBJECTIVE: Deficiency in the cytosolic DNA sensor RNA Polymerase III (POL III) was recently described in children with severe varicella-zoster virus (VZV) infection in the CNS or lungs. Here, we describe a pair of monozygotic female twins, who both experienced severe recurrent CNS vasculitis caused by VZV reactivation. The clinical presentation and findings included recurrent episodes of headache, dizziness, and neurologic deficits, CSF with pleocytosis and intrathecal VZV antibody production, and MRI of the brain showing ischemic lesions. METHODS: We performed whole-exome sequencing and identified a rare mutation in the POL III subunit POLR3F. Subsequently, antiviral responses in patient peripheral blood mononuclear cells (PBMCs) were examined and compared with healthy controls. RESULTS: The identified R50W POLR3F mutation is predicted by bioinformatics to be damaging, and when tested in functional assays, patient PBMCs exhibited impaired antiviral and inflammatory responses to the POL III agonist poly(dA:dT) and increased viral replication compared with controls. CONCLUSIONS: Altogether, these cases add genetic and immunologic evidence to the novel association between defects in sensing of AT-rich DNA present in the VZV genome and increased susceptibility to severe manifestations of VZV infection in the CNS in humans.

12.
Trends Mol Med ; 24(10): 904-915, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30115567

RESUMO

In most individuals, varicella zoster virus (VZV) causes varicella upon primary infection and zoster during reactivation. However, in a subset of individuals, VZV may cause severe disease, including encephalitis. Host genetics is believed to be the main determinant of exacerbated disease manifestations. Recent studies have demonstrated that defects in the DNA sensor RNA polymerase III (POL III) confer selective increased susceptibility to VZV infection, thus providing fundamental new insight into VZV immunity. Here we describe the roles of POL III in housekeeping and immune surveillance during VZV infection. We present the latest knowledge on the role of POL III in VZV infection and discuss outstanding questions related to the role of POL III in VZV immunity, and how this insight can be translated into clinical medicine.


Assuntos
Varicela/genética , Encefalite por Varicela Zoster/genética , Herpes Zoster/genética , Interações Hospedeiro-Patógeno , RNA Polimerase III/genética , Ativação Viral , Adulto , Varicela/imunologia , Varicela/patologia , Varicela/virologia , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/imunologia , DNA Viral/genética , DNA Viral/imunologia , Encefalite por Varicela Zoster/imunologia , Encefalite por Varicela Zoster/patologia , Encefalite por Varicela Zoster/virologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Herpes Zoster/imunologia , Herpes Zoster/patologia , Herpes Zoster/virologia , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/imunologia , Humanos , Imunidade Inata , Vigilância Imunológica , Interferons/genética , Interferons/imunologia , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , RNA Polimerase III/imunologia , Receptores Imunológicos
13.
J Clin Invest ; 127(9): 3543-3556, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28783042

RESUMO

Varicella zoster virus (VZV) typically causes chickenpox upon primary infection. In rare cases, VZV can give rise to life-threatening disease in otherwise healthy people, but the immunological basis for this remains unexplained. We report 4 cases of acute severe VZV infection affecting the central nervous system or the lungs in unrelated, otherwise healthy children who are heterozygous for rare missense mutations in POLR3A (one patient), POLR3C (one patient), or both (two patients). POLR3A and POLR3C encode subunits of RNA polymerase III. Leukocytes from all 4 patients tested exhibited poor IFN induction in response to synthetic or VZV-derived DNA. Moreover, leukocytes from 3 of the patients displayed defective IFN production upon VZV infection and reduced control of VZV replication. These phenotypes were rescued by transduction with relevant WT alleles. This work demonstrates that monogenic or digenic POLR3A and POLR3C deficiencies confer increased susceptibility to severe VZV disease in otherwise healthy children, providing evidence for an essential role of a DNA sensor in human immunity.


Assuntos
Varicela/genética , Herpes Zoster/genética , Mutação , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Alelos , Animais , Criança , Análise Mutacional de DNA , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Herpesvirus Humano 3 , Heterozigoto , Humanos , Leucócitos/metabolismo , Camundongos , Mutação de Sentido Incorreto , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...