Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 36(16): 2404-2418, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28716804

RESUMO

Type 2 inflammation is a defining feature of infection with parasitic worms (helminths), as well as being responsible for widespread suffering in allergies. However, the precise mechanisms involved in T helper (Th) 2 polarization by dendritic cells (DCs) are currently unclear. We have identified a previously unrecognized role for type I IFN (IFN-I) in enabling this process. An IFN-I signature was evident in DCs responding to the helminth Schistosoma mansoni or the allergen house dust mite (HDM). Further, IFN-I signaling was required for optimal DC phenotypic activation in response to helminth antigen (Ag), and efficient migration to, and localization with, T cells in the draining lymph node (dLN). Importantly, DCs generated from Ifnar1-/- mice were incapable of initiating Th2 responses in vivo These data demonstrate for the first time that the influence of IFN-I is not limited to antiviral or bacterial settings but also has a central role to play in DC initiation of Th2 responses.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/metabolismo , Células Th2/imunologia , Alérgenos/imunologia , Animais , Camundongos , Camundongos Knockout , Pyroglyphidae/imunologia , Receptor de Interferon alfa e beta/deficiência , Schistosoma mansoni/imunologia
2.
Curr Opin Immunol ; 41: 55-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27309352

RESUMO

RNA interference and CRISPR/Cas9 technologies now enable systematic discovery of genes that regulate key pathways in the complex interaction between immune cells and tumor cells. Discovery screens are feasible in an in vivo setting, allowing identification of genes that limit the effectiveness of anti-tumor immunity. In vivo discovery screens can be informed by single-cell RNA-seq experiments that define the differentially expressed genes between functionally distinct immune cell subpopulations, both in humans and relevant animal models. Novel targets for cancer immunotherapy are being defined by the in depth functional annotation of immunosuppressive pathways in the tumor microenvironment.


Assuntos
Edição de Genes , Neoplasias/genética , Neoplasias/imunologia , Interferência de RNA , Animais , Humanos , Imunoterapia , Neoplasias/terapia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...