Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7243, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945563

RESUMO

Histone modifications influence the recruitment of reader proteins to chromosomes to regulate events including transcription and cell division. The idea of a histone code, where combinations of modifications specify unique downstream functions, is widely accepted and can be demonstrated in vitro. For example, on synthetic peptides, phosphorylation of Histone H3 at threonine-3 (H3T3ph) prevents the binding of reader proteins that recognize trimethylation of the adjacent lysine-4 (H3K4me3), including the TAF3 component of TFIID. To study these combinatorial effects in cells, we analyzed the genome-wide distribution of H3T3ph and H3K4me2/3 during mitosis. We find that H3T3ph anti-correlates with adjacent H3K4me2/3 in cells, and that the PHD domain of TAF3 can bind H3K4me2/3 in isolated mitotic chromatin despite the presence of H3T3ph. Unlike in vitro, H3K4 readers are still displaced from chromosomes in mitosis in Haspin-depleted cells lacking H3T3ph. H3T3ph is therefore unlikely to be responsible for transcriptional downregulation during cell division.


Assuntos
Histonas , Fatores de Transcrição , Histonas/metabolismo , Fosforilação , Fatores de Transcrição/metabolismo , Leitura , Cromossomos/genética , Cromossomos/metabolismo , Mitose/genética
2.
SLAS Discov ; 27(8): 471-475, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162794

RESUMO

Bioluminescence assays using luciferase enzymes are widely used in research to monitor gene expression and an array of other cell properties, and split luciferase enzymes can be used to measure protein interactions in biochemical assays and in living cells. When these methods are employed in chemical library screening efforts, it is vital that the activity of the luciferase enzyme itself is not strongly influenced by library components. Here, we developed a NanoBiT split luciferase assay to measure phosphorylation of Histone H3 peptides and used it to test the robustness of split luciferase to interference from two libraries of commonly used kinase inhibitors, including the Kinase Chemogenomic Set (KCGS). We found that NanoBiT luciferase is not significantly affected by the great majority of kinase inhibitors tested. However, the weak inhibition observed for a small minority of kinase inhibitors encourages the inclusion of suitable controls in NanoBiT (or NanoLuc) assays.


Assuntos
Tecnologia
3.
Sci Rep ; 12(1): 11210, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778595

RESUMO

Protein kinases that phosphorylate histones are ideally-placed to influence the behavior of chromosomes during cell division. Indeed, a number of conserved histone phosphorylation events occur prominently during mitosis and meiosis in most eukaryotes, including on histone H3 at threonine-3 (H3T3ph). At least two kinases, Haspin and VRK1 (NHK-1/ballchen in Drosophila), have been proposed to carry out this modification. Phosphorylation of H3 by Haspin has defined roles in mitosis, but the significance of VRK1 activity towards histones in dividing cells has been unclear. Here, using in vitro kinase assays, KiPIK screening, RNA interference, and CRISPR/Cas9 approaches, we were unable to substantiate a direct role for VRK1, or its paralogue VRK2, in the phosphorylation of threonine-3 or serine-10 of Histone H3 in mitosis, although loss of VRK1 did slow cell proliferation. We conclude that the role of VRKs, and their more recently identified association with neuromuscular disease and importance in cancers of the nervous system, are unlikely to involve mitotic histone kinase activity. In contrast, Haspin is required to generate H3T3ph during mitosis.


Assuntos
Histonas , Mitose , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Fosforilação , Proteínas Serina-Treonina Quinases , Treonina/metabolismo
4.
Langmuir ; 38(2): 620-628, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34981921

RESUMO

The connection between cells and their substrate is essential for biological processes such as cell migration. Atomic force microscopy nanoindentation has often been adopted to measure single-cell mechanics. Very recently, fluidic force microscopy has been developed to enable rapid measurements of cell adhesion. However, simultaneous characterization of the cell-to-material adhesion and viscoelastic properties of the same cell is challenging. In this study, we present a new approach to simultaneously determine these properties for single cells, using fluidic force microscopy. For MCF-7 cells grown on tissue-culture-treated polystyrene surfaces, we found that the adhesive force and adhesion energy were correlated for each cell. Well-spread cells tended to have stronger adhesion, which may be due to the greater area of the contact between cellular adhesion receptors and the surface. By contrast, the viscoelastic properties of MCF-7 cells cultured on the same surface appeared to have little dependence on cell shape. This methodology provides an integrated approach to better understand the biophysics of multiple cell types.


Assuntos
Microscopia de Força Atômica , Biofísica , Adesão Celular , Humanos , Células MCF-7 , Propriedades de Superfície
5.
Rheumatology (Oxford) ; 59(12): 3939-3951, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32725139

RESUMO

OBJECTIVES: NF-κB regulates genes that control inflammation, cell proliferation, differentiation and survival. Dysregulated NF-κB signalling alters normal skin physiology and deletion of cRel limits bleomycin-induced skin fibrosis. This study investigates the role of cRel in modulating fibroblast phenotype in the context of SSc. METHODS: Fibrosis was assessed histologically in mice challenged with bleomycin to induce lung or skin fibrosis. RNA sequencing and pathway analysis was performed on wild type and Rel-/- murine lung and dermal fibroblasts. Functional assays examined fibroblast proliferation, migration and matrix production. cRel overexpression was investigated in human dermal fibroblasts. cRel immunostaining was performed on lung and skin tissue sections from SSc patients and non-fibrotic controls. RESULTS: cRel expression was elevated in murine lung and skin fibrosis models. Rel-/- mice were protected from developing pulmonary fibrosis. Soluble collagen production was significantly decreased in fibroblasts lacking cRel while proliferation and migration of these cells was significantly increased. cRel regulates genes involved in extracellular structure and matrix organization. Positive cRel staining was observed in fibroblasts in human SSc skin and lung tissue. Overexpression of constitutively active cRel in human dermal fibroblasts increased expression of matrix genes. An NF-κB gene signature was identified in diffuse SSc skin and nuclear cRel expression was elevated in SSc skin fibroblasts. CONCLUSION: cRel regulates a pro-fibrogenic transcriptional programme in fibroblasts that may contribute to disease pathology. Targeting cRel signalling in fibroblasts of SSc patients could provide a novel therapeutic avenue to limit scar formation in this disease.


Assuntos
Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Escleroderma Sistêmico/metabolismo , Animais , Matriz Extracelular/metabolismo , Fibrose , Imunofluorescência , Regulação da Expressão Gênica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Escleroderma Sistêmico/patologia
6.
Nat Commun ; 11(1): 1684, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245944

RESUMO

There are thousands of known cellular phosphorylation sites, but the paucity of ways to identify kinases for particular phosphorylation events remains a major roadblock for understanding kinase signaling. To address this, we here develop a generally applicable method that exploits the large number of kinase inhibitors that have been profiled on near-kinome-wide panels of protein kinases. The inhibition profile for each kinase provides a fingerprint that allows identification of unknown kinases acting on target phosphosites in cell extracts. We validate the method on diverse known kinase-phosphosite pairs, including histone kinases, EGFR autophosphorylation, and Integrin ß1 phosphorylation by Src-family kinases. We also use our approach to identify the previously unknown kinases responsible for phosphorylation of INCENP at a site within a commonly phosphorylated motif in mitosis (a non-canonical target of Cyclin B-Cdk1), and of BCL9L at S915 (PKA). We show that the method has clear advantages over in silico and genetic screening.


Assuntos
Testes Genéticos/métodos , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaios Enzimáticos , Células HeLa , Humanos , Mitose , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/metabolismo
7.
Biochim Biophys Acta Gene Regul Mech ; 1861(10): 962-970, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30496041

RESUMO

The NF-?B p50 subunit is an important regulator of inflammation, with recent experimental evidence to support it also having a tumor suppressor role. Classically, p50 functions in heterodimeric form with the RelA (p65) NF-?B subunit to activate inflammatory genes. However, p50 also forms homodimers which actively repress NF-?B-dependent inflammatory gene expression and exert an important brake on the inflammatory process. This repressive activity of p50:p50 is thought to be in part mediated by an interaction with the epigenetic repressor protein Histone Deacetylase 1 (HDAC1). However, neither the interaction of p50 with HDAC1 nor the requirement of HDAC1 for the repressive activities of p50 has been well defined. Here we employed in silico prediction with in vitro assays to map sites of interaction of HDAC1 on the p50 protein. Directed mutagenesis of one such region resulted in almost complete loss of HDAC1 binding to p50. Transfected mutant p50 protein lacking the putative HDAC1 docking motif resulted in enhanced cytokine and chemokine expression when compared with cells expressing a transfected wild type p50. In addition, expression of this mutant p50 was associated with enhanced chemoattraction of neutrophils and acetylation of known inflammatory genes demonstrating the likely importance of the p50:HDAC1 interaction for controlling inflammation. These new insights provide an advance on current knowledge of the mechanisms by which NF-?B-dependent gene transcription are regulated and highlight the potential for manipulation of p50:HDAC1 interactions to bring about experimental modulation of chronic inflammation and pathologies associated with dysregulated neutrophil accumulation and activation.


Assuntos
Histona Desacetilase 1/metabolismo , Subunidade p50 de NF-kappa B/química , Subunidade p50 de NF-kappa B/metabolismo , Animais , Linhagem Celular , Quimiocinas/genética , Quimiotaxia , Montagem e Desmontagem da Cromatina , Expressão Gênica , Histona Desacetilase 1/química , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Subunidade p50 de NF-kappa B/genética , Neutrófilos/imunologia , Sinais de Localização Nuclear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...