Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Front Cell Dev Biol ; 11: 1216726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601107

RESUMO

Neuromuscular junctions (NMJs) are a special type of chemical synapse that transmits electrical stimuli from motor neurons (MNs) to their innervating skeletal muscle to induce a motor response. They are an ideal model for the study of synapses, given their manageable size and easy accessibility. Alterations in their morphology or function lead to neuromuscular disorders, such as the congenital myasthenic syndromes, which are caused by mutations in proteins located in the NMJ. In this review, we highlight novel potential candidate genes that may cause or modify NMJs-related pathologies in humans by exploring the phenotypes of hundreds of mouse models available in the literature. We also underscore the fact that NMJs may differ between species, muscles or even sexes. Hence the importance of choosing a good model organism for the study of NMJ-related diseases: only taking into account the specific features of the mammalian NMJ, experimental results would be efficiently translated to the clinic.

2.
Front Physiol ; 13: 898792, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936917

RESUMO

ADCK2 haploinsufficiency-mediated mitochondrial coenzyme Q deficiency in skeletal muscle causes mitochondrial myopathy associated with defects in beta-oxidation of fatty acids, aged-matched metabolic reprogramming, and defective physical performance. Calorie restriction has proven to increase lifespan and delay the onset of chronic diseases associated to aging. To study the possible treatment by food deprivation, heterozygous Adck2 knockout mice were fed under 40% calorie restriction (CR) and the phenotype was followed for 7 months. The overall glucose and fatty acids metabolism in muscle was restored in mutant mice to WT levels after CR. CR modulated the skeletal muscle metabolic profile of mutant mice, partially rescuing the profile of WT animals. The analysis of mitochondria isolated from skeletal muscle demonstrated that CR increased both CoQ levels and oxygen consumption rate (OCR) based on both glucose and fatty acids substrates, along with mitochondrial mass. The elevated aerobic metabolism fits with an increase of type IIa fibers, and a reduction of type IIx in mutant muscles, reaching WT levels. To further explore the effect of CR over muscle stem cells, satellite cells were isolated and induced to differentiate in culture media containing serum from animals in either ad libitum or CR diets for 72 h. Mutant cells showed slower differentiation alongside with decreased oxygen consumption. In vitro differentiation of mutant cells was increased under CR serum reaching levels of WT isolated cells, recovering respiration measured by OCR and partially beta-oxidation of fatty acids. The overall increase of skeletal muscle bioenergetics following CR intervention is paralleled with a physical activity improvement, with some increases in two and four limbs strength tests, and weights strength test. Running wheel activity was also partially improved in mutant mice under CR. These results demonstrate that CR intervention, which has been shown to improve age-associated physical and metabolic decline in WT mice, also recovers the defective aerobic metabolism and differentiation of skeletal muscle in mice caused by ADCK2 haploinsufficiency.

3.
Exp Cell Res ; 419(1): 113299, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926660

RESUMO

Skeletal muscle development and regeneration is governed by the combined action of Myf5, MyoD, Mrf4 and MyoG, also known as the myogenic regulatory factors (MRFs). These transcription factors are expressed in a highly spatio-temporal restricted manner, ensuring the significant functional and metabolic diversity observed between the different muscle groups. In this review, we will discuss the multiple layers of regulation that contribute to the control of the exquisite expression patterns of the MRFs in particular, and of myogenic genes in general. We will highlight all major regulatory processes that play a role in myogenesis: from those that modulate chromatin status and transcription competence, such as DNA methylation, histone modification, chromatin remodeling, or non-coding RNAs, to those that control transcript and protein processing and modification, such as alternative splicing, polyadenylation, other mRNA modifications, or post-translational protein modifications. All these processes are exquisitely and tightly coordinated to ensure the proper activation, maintenance and termination of the myogenic process.


Assuntos
Desenvolvimento Muscular , Fatores de Regulação Miogênica , Montagem e Desmontagem da Cromatina , Expressão Gênica , Regulação da Expressão Gênica , Músculo Esquelético , Fatores de Transcrição
4.
J Vis Exp ; (180)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35225269

RESUMO

Most of the cell's energy is obtained through the degradation of glucose, fatty acids, and amino acids by different pathways that converge on the mitochondrial oxidative phosphorylation (OXPHOS) system, which is regulated in response to cellular demands. The lipid molecule Coenzyme Q (CoQ) is essential in this process by transferring electrons to complex III in the electron transport chain (ETC) through constant oxidation/reduction cycles. Mitochondria status and, ultimately, cellular health can be assessed by measuring ETC oxygen consumption using respirometric assays. These studies are typically performed in established or primary cell lines that have been cultured for several days. In both cases, the respiration parameters obtained may have deviated from normal physiological conditions in any given organ or tissue. Additionally, the intrinsic characteristics of cultured single fibers isolated from skeletal muscle impede this type of analysis. This paper presents an updated and detailed protocol for the analysis of respiration in freshly isolated mitochondria from mouse skeletal muscle. We also provide solutions to potential problems that could arise at any step of the process. The method presented here could be applied to compare oxygen consumption rates in diverse transgenic mouse models and study the mitochondrial response to drug treatments or other factors such as aging or sex. This is a feasible method to respond to crucial questions about mitochondrial bioenergetics metabolism and regulation.


Assuntos
Mitocôndrias , Fosforilação Oxidativa , Animais , Metabolismo Energético , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias Musculares/química , Músculo Esquelético , Consumo de Oxigênio/fisiologia
5.
Genome Biol ; 21(1): 267, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33100228

RESUMO

BACKGROUND: One of the most unusual sources of phylogenetically restricted genes is the molecular domestication of transposable elements into a host genome as functional genes. Although these kinds of events are sometimes at the core of key macroevolutionary changes, their origin and organismal function are generally poorly understood. RESULTS: Here, we identify several previously unreported transposable element domestication events in the human and mouse genomes. Among them, we find a remarkable molecular domestication that gave rise to a multigenic family in placental mammals, the Bex/Tceal gene cluster. These genes, which act as hub proteins within diverse signaling pathways, have been associated with neurological features of human patients carrying genomic microdeletions in chromosome X. The Bex/Tceal genes display neural-enriched patterns and are differentially expressed in human neurological disorders, such as autism and schizophrenia. Two different murine alleles of the cluster member Bex3 display morphological and physiopathological brain modifications, such as reduced interneuron number and hippocampal electrophysiological imbalance, alterations that translate into distinct behavioral phenotypes. CONCLUSIONS: We provide an in-depth understanding of the emergence of a gene cluster that originated by transposon domestication and gene duplication at the origin of placental mammals, an evolutionary process that transformed a non-functional transposon sequence into novel components of the eutherian genome. These genes were integrated into existing signaling pathways involved in the development, maintenance, and function of the CNS in eutherians. At least one of its members, Bex3, is relevant for higher brain functions in placental mammals and may be involved in human neurological disorders.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Elementos de DNA Transponíveis , Domesticação , Eutérios/genética , Família Multigênica , Animais , Transtorno do Espectro Autista/genética , Encéfalo , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/genética , Evolução Molecular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Nucleares/genética , Filogenia , Placenta , Gravidez , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética
6.
Nat Commun ; 10(1): 797, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770808

RESUMO

FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein.


Assuntos
Genes Recessivos , Predisposição Genética para Doença/genética , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/genética , Oftalmoplegia/genética , Proteínas de Ligação a RNA/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Animais , Células Cultivadas , Éxons/genética , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos Transgênicos , Miopatias Congênitas Estruturais/congênito , Miopatias Congênitas Estruturais/metabolismo , Oftalmoplegia/congênito , Oftalmoplegia/metabolismo , Proteínas de Ligação a RNA/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
7.
Genome Biol ; 18(1): 106, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615069

RESUMO

BACKGROUND: The organisation of vertebrate genomes into topologically associating domains (TADs) is believed to facilitate the regulation of the genes located within them. A remaining question is whether TAD organisation is achieved through the interactions of the regulatory elements within them or if these interactions are favoured by the pre-existence of TADs. If the latter is true, the fusion of two independent TADs should result in the rewiring of the transcriptional landscape and the generation of ectopic contacts. RESULTS: We show that interactions within the PAX3 and FOXO1 domains are restricted to their respective TADs in normal conditions, while in a patient-derived alveolar rhabdomyosarcoma cell line, harbouring the diagnostic t(2;13)(q35;q14) translocation that brings together the PAX3 and FOXO1 genes, the PAX3 promoter interacts ectopically with FOXO1 sequences. Using a combination of 4C-seq datasets, we have modelled the three-dimensional organisation of the fused landscape in alveolar rhabdomyosarcoma. CONCLUSIONS: The chromosomal translocation that leads to alveolar rhabdomyosarcoma development generates a novel TAD that is likely to favour ectopic PAX3:FOXO1 oncogene activation in non-PAX3 territories. Rhabdomyosarcomas may therefore arise from cells which do not normally express PAX3. The borders of this novel TAD correspond to the original 5'- and 3'- borders of the PAX3 and FOXO1 TADs, respectively, suggesting that TAD organisation precedes the formation of regulatory long-range interactions. Our results demonstrate that, upon translocation, novel regulatory landscapes are formed allowing new intra-TAD interactions between the original loci involved.


Assuntos
Proteína Forkhead Box O1/genética , Fator de Transcrição PAX3/genética , Mapas de Interação de Proteínas/genética , Rabdomiossarcoma Alveolar/genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Proteínas de Fusão Oncogênica/genética , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Sequências Reguladoras de Ácido Nucleico/genética , Rabdomiossarcoma Alveolar/patologia , Translocação Genética/genética
8.
Stem Cell Reports ; 7(3): 411-424, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27594590

RESUMO

The dermal Panniculus carnosus (PC) muscle is important for wound contraction in lower mammals and represents an interesting model of muscle regeneration due to its high cell turnover. The resident satellite cells (the bona fide muscle stem cells) remain poorly characterized. Here we analyzed PC satellite cells with regard to developmental origin and purported function. Lineage tracing shows that they originate in Myf5(+), Pax3/Pax7(+) cell populations. Skin and muscle wounding increased PC myofiber turnover, with the satellite cell progeny being involved in muscle regeneration but with no detectable contribution to the wound-bed myofibroblasts. Since hematopoietic stem cells fuse to PC myofibers in the absence of injury, we also studied the contribution of bone marrow-derived cells to the PC satellite cell compartment, demonstrating that cells of donor origin are capable of repopulating the PC muscle stem cell niche after irradiation and bone marrow transplantation but may not fully acquire the relevant myogenic commitment.


Assuntos
Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Biomarcadores , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Transgênicos , Desenvolvimento Muscular , Músculo Esquelético/fisiologia , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX7/genética , Fenótipo , Regeneração , Células Satélites de Músculo Esquelético/transplante
9.
Nat Commun ; 7: 12397, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27484840

RESUMO

The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia.


Assuntos
Envelhecimento/metabolismo , Fatores de Transcrição MEF2/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Fatores de Regulação Miogênica/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Histona Desacetilases/metabolismo , Humanos , Hipertrofia , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Especificidade de Órgãos/genética , Ligação Proteica , Biossíntese de Proteínas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos Wistar , Proteínas Repressoras/metabolismo , Transcrição Gênica , Regulação para Cima/genética
11.
PLoS Genet ; 11(2): e1004951, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25659124

RESUMO

Many recurrent chromosome translocations in cancer result in the generation of fusion genes that are directly implicated in the tumorigenic process. Precise modeling of the effects of cancer fusion genes in mice has been inaccurate, as constructs of fusion genes often completely or partially lack the correct regulatory sequences. The reciprocal t(2;13)(q36.1;q14.1) in human alveolar rhabdomyosarcoma (A-RMS) creates a pathognomonic PAX3-FOXO1 fusion gene. In vivo mimicking of this translocation in mice is complicated by the fact that Pax3 and Foxo1 are in opposite orientation on their respective chromosomes, precluding formation of a functional Pax3-Foxo1 fusion via a simple translocation. To circumvent this problem, we irreversibly inverted the orientation of a 4.9 Mb syntenic fragment on chromosome 3, encompassing Foxo1, by using Cre-mediated recombination of two pairs of unrelated oppositely oriented LoxP sites situated at the borders of the syntenic region. We tested if spatial proximity of the Pax3 and Foxo1 loci in myoblasts of mice homozygous for the inversion facilitated Pax3-Foxo1 fusion gene formation upon induction of targeted CRISPR-Cas9 nuclease-induced DNA double strand breaks in Pax3 and Foxo1. Fluorescent in situ hybridization indicated that fore limb myoblasts show a higher frequency of Pax3/Foxo1 co-localization than hind limb myoblasts. Indeed, more fusion genes were generated in fore limb myoblasts via a reciprocal t(1;3), which expressed correctly spliced Pax3-Foxo1 mRNA encoding Pax3-Foxo1 fusion protein. We conclude that locus proximity facilitates chromosome translocation upon induction of DNA double strand breaks. Given that the Pax3-Foxo1 fusion gene will contain all the regulatory sequences necessary for precise regulation of its expression, we propose that CRISPR-Cas9 provides a novel means to faithfully model human diseases caused by chromosome translocation in mice.


Assuntos
Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Rabdomiossarcoma Alveolar/genética , Translocação Genética/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Camundongos , Mioblastos/metabolismo , Mioblastos/patologia , RNA Mensageiro/biossíntese , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia
12.
Cell Rep ; 8(4): 983-90, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25131200

RESUMO

A rare germline duplication upstream of the bone morphogenetic protein antagonist GREM1 causes a Mendelian-dominant predisposition to colorectal cancer (CRC). The underlying disease mechanism is strong, ectopic GREM1 overexpression in the intestinal epithelium. Here, we confirm that a common GREM1 polymorphism, rs16969681, is also associated with CRC susceptibility, conferring ∼20% differential risk in the general population. We hypothesized the underlying cause to be moderate differences in GREM1 expression. We showed that rs16969681 lies in a region of active chromatin with allele- and tissue-specific enhancer activity. The CRC high-risk allele was associated with stronger gene expression, and higher Grem1 mRNA levels increased the intestinal tumor burden in Apc(Min) mice. The intestine-specific transcription factor CDX2 and Wnt effector TCF7L2 bound near rs16969681, with significantly higher affinity for the risk allele, and CDX2 overexpression in CDX2/GREM1-negative cells caused re-expression of GREM1. rs16969681 influences CRC risk through effects on Wnt-driven GREM1 expression in colorectal tumors.


Assuntos
Neoplasias do Colo/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Sequência de Bases , Fator de Transcrição CDX2 , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Camundongos Transgênicos , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Risco
13.
Genome Res ; 24(7): 1075-85, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24709821

RESUMO

The complex relationship between ontogeny and phylogeny has been the subject of attention and controversy since von Baer's formulations in the 19th century. The classic concept that embryogenesis progresses from clade general features to species-specific characters has often been revisited. It has become accepted that embryos from a clade show maximum morphological similarity at the so-called phylotypic period (i.e., during mid-embryogenesis). According to the hourglass model, body plan conservation would depend on constrained molecular mechanisms operating at this period. More recently, comparative transcriptomic analyses have provided conclusive evidence that such molecular constraints exist. Examining cis-regulatory architecture during the phylotypic period is essential to understand the evolutionary source of body plan stability. Here we compare transcriptomes and key epigenetic marks (H3K4me3 and H3K27ac) from medaka (Oryzias latipes) and zebrafish (Danio rerio), two distantly related teleosts separated by an evolutionary distance of 115-200 Myr. We show that comparison of transcriptome profiles correlates with anatomical similarities and heterochronies observed at the phylotypic stage. Through comparative epigenomics, we uncover a pool of conserved regulatory regions (≈700), which are active during the vertebrate phylotypic period in both species. Moreover, we show that their neighboring genes encode mainly transcription factors with fundamental roles in tissue specification. We postulate that these regulatory regions, active in both teleost genomes, represent key constrained nodes of the gene networks that sustain the vertebrate body plan.


Assuntos
Epigênese Genética , Epigenômica , Peixes/genética , Filogenia , Sequências Reguladoras de Ácido Nucleico , Vertebrados/genética , Animais , Análise por Conglomerados , Epigenômica/métodos , Peixes/anatomia & histologia , Peixes/classificação , Peixes/embriologia , Perfilação da Expressão Gênica , Histonas/metabolismo , Especificidade de Órgãos/genética , Oryzias , Especificidade da Espécie , Transcrição Gênica , Vertebrados/anatomia & histologia , Vertebrados/classificação , Vertebrados/embriologia , Peixe-Zebra
14.
Genome Res ; 24(3): 487-95, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24277716

RESUMO

In multicellular organisms, cis-regulation controls gene expression in space and time. Despite the essential implication of cis-regulation in the development and evolution of organisms and in human diseases, our knowledge about regulatory sequences largely derives from analyzing their activity individually and outside their genomic context. Indeed, the contribution of these sequences to the expression of their target genes in their genomic context is still largely unknown. Here we present a novel genetic screen designed to visualize and interrupt gene regulatory landscapes in vertebrates. In this screen, based on the random insertion of an engineered Tol2 transposon carrying a strong insulator separating two fluorescent reporter genes, we isolated hundreds of zebrafish lines containing insertions that disrupt the cis-regulation of tissue-specific expressed genes. We therefore provide a new easy-to-handle tool that will help to disrupt and chart the regulatory activity spread through the vast noncoding regions of the vertebrate genome.


Assuntos
Elementos de DNA Transponíveis/genética , Elementos Facilitadores Genéticos , Elementos Isolantes , Mutagênese Insercional/métodos , Vertebrados/genética , Animais , Animais Geneticamente Modificados , Fluorescência , Genes Reporter/fisiologia , Genoma , Humanos , Camundongos , Peixe-Zebra/genética
15.
Cell ; 154(4): 843-58, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23953115

RESUMO

Mononuclear phagocytes are classified as macrophages or dendritic cells (DCs) based on cell morphology, phenotype, or select functional properties. However, these attributes are not absolute and often overlap, leading to difficulties in cell-type identification. To circumvent this issue, we describe a mouse model to define DCs based on their ontogenetic descendence from a committed precursor. We show that precursors of mouse conventional DCs, but not other leukocytes, are marked by expression of DNGR-1. Genetic tracing of DNGR-1 expression history specifically marks cells traditionally ascribed to the DC lineage, and this restriction is maintained after inflammation. Notably, in some tissues, cells previously thought to be monocytes/macrophages are in fact descendants from DC precursors. These studies provide an in vivo model for fate mapping of DCs, distinguishing them from other leukocyte lineages, and thus help to unravel the functional complexity of the mononuclear phagocyte system.


Assuntos
Linhagem da Célula , Células Dendríticas/citologia , Lectinas Tipo C/metabolismo , Receptores Imunológicos/metabolismo , Animais , Células Dendríticas/metabolismo , Hematopoese , Inflamação/patologia , Rim/citologia , Lectinas Tipo C/genética , Células Progenitoras Linfoides/metabolismo , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos/citologia , Receptores de IgG/metabolismo , Receptores Imunológicos/genética
16.
FEBS J ; 280(17): 3980-90, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23751110

RESUMO

The transcriptional regulatory network that controls the determination and differentiation of skeletal muscle cells in the embryo has at its core the four myogenic regulatory factors (MRFs) Myf5, MyoD, Mrf4 and MyoG. These basic helix-loop-helix transcription factors act by binding, as obligate heterodimers with the ubiquitously expressed E proteins, to the E-box sequence CANNTG. While all skeletal muscle cells have the same underlying function their progenitors arise at many sites in the embryo and it has become apparent that the upstream activators of the cascade differ in these various populations so that it can be switched on by a variety of inductive signals, some of which act by initiating transcription, some by maintaining it. The application of genome-wide approaches has provided important new information as to how the MRFs function to activate the terminal differentiation programme and some of these data provide significant mechanistic insights into questions which have exercised the field for many years. We also consider the emerging roles played by micro-RNAs in the regulation of both upstream activators and terminal differentiation genes.


Assuntos
Diferenciação Celular , Desenvolvimento Muscular/fisiologia , Músculos/citologia , Fatores de Regulação Miogênica/metabolismo , Animais , Humanos , Músculos/metabolismo
17.
Dev Cell ; 22(6): 1208-20, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22609161

RESUMO

Pax3 and Pax7 regulate stem cell function in skeletal myogenesis. However, molecular insight into their distinct roles has remained elusive. Using gene expression data combined with genome-wide binding-site analysis, we show that both Pax3 and Pax7 bind identical DNA motifs and jointly activate a large panel of genes involved in muscle stem cell function. Surprisingly, in adult myoblasts Pax3 binds a subset (6.4%) of Pax7 targets. Despite a significant overlap in their transcriptional network, Pax7 regulates distinct panels of genes involved in the promotion of proliferation and inhibition of myogenic differentiation. We show that Pax7 has a higher binding affinity to the homeodomain-binding motif relative to Pax3, suggesting that intrinsic differences in DNA binding contribute to the observed functional difference between Pax3 and Pax7 binding in myogenesis. Together, our data demonstrate distinct attributes of Pax7 function and provide mechanistic insight into the nonredundancy of Pax3 and Pax7 in muscle development.


Assuntos
Motivos de Aminoácidos/fisiologia , Proteínas de Homeodomínio/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Fator de Transcrição PAX7/metabolismo , Transcrição Gênica , Animais , Diferenciação Celular , Proliferação de Células , Perfilação da Expressão Gênica , Camundongos , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/metabolismo
18.
Development ; 139(5): 958-67, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22318627

RESUMO

The specification of the skeletal muscle lineage during craniofacial development is dependent on the activity of MYF5 and MYOD, two members of the myogenic regulatory factor family. In the absence of MYF5 or MYOD there is not an overt muscle phenotype, whereas in the double Myf5;MyoD knockout branchiomeric myogenic precursors fail to be specified and skeletal muscle is not formed. The transcriptional regulation of Myf5 is controlled by a multitude of regulatory elements acting at different times and anatomical locations, with at least five operating in the branchial arches. By contrast, only two enhancers have been implicated in the regulation of MyoD. In this work, we characterize an enhancer element that drives Myf5 expression in the branchial arches from 9.5 days post-coitum and show that its activity in the context of the entire locus is dependent on two highly conserved E-boxes. These binding sites are required in a subset of Myf5-expressing cells including both progenitors and those which have entered the myogenic pathway. The correct levels of expression of Myf5 and MyoD result from activation by musculin and TCF21 through direct binding to specific enhancers. Consistent with this, we show that in the absence of musculin the timing of activation of Myf5 and MyoD is not affected but the expression levels are significantly reduced. Importantly, normal levels of Myf5 expression are restored at later stages, which might explain the absence of particular muscles in the Msc;Tcf21 double-knockout mice.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/fisiologia , Região Branquial/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/fisiologia , Fator Regulador Miogênico 5/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Região Branquial/anatomia & histologia , Região Branquial/fisiologia , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Redes Reguladoras de Genes , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Músculo Esquelético/anatomia & histologia , Mutação , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator Regulador Miogênico 5/genética , Sequências Reguladoras de Ácido Nucleico , Células-Tronco/citologia , Células-Tronco/fisiologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética
19.
Dev Biol ; 355(2): 372-80, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21527258

RESUMO

The transcriptional regulation of the Mrf4/Myf5 locus depends on a multitude of enhancers that, in equilibria with transcription balancing sequences and the promoters, regulate the expression of the two genes throughout embryonic development and in the adult. Transcription in a particular set of muscle progenitors can be driven by the combined outputs of several enhancers that are not able to recapitulate the entire expression pattern in isolation, or by the action of a single enhancer the activity of which in isolation is equivalent to that within the context of the locus. We identified a new enhancer element of this second class, ECR111, which is highly conserved in all vertebrate species and is necessary and sufficient to drive Myf5 expression in ventro-caudal and ventro-rostral somitic compartments in the mouse embryo. EMSA analyses and data obtained from binding-site mutations in transgenic embryos show that a binding site for a TEA Domain (TEAD) transcription factor is essential for the function of this new enhancer, while ChIP assays show that at least two members of the family of transcription factors bind to it in vivo.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Desenvolvimento Muscular/fisiologia , Fator Regulador Miogênico 5/metabolismo , Somitos/embriologia , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Camundongos , Somitos/metabolismo , Fatores de Transcrição de Domínio TEA
20.
Gene Expr Patterns ; 11(5-6): 299-308, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21397048

RESUMO

In order to fully describe the expression pattern of the transcription factor FoxO1, we have screened the ES cell genetrap repository databases and obtained a clone that contains the ß-geo reporter gene inserted within intron 1 of FoxO1. We then used the ES cell clone to generate a new mouse strain (B6;129P2- Foxo1(Gt(AD0086)Wtsi/JJC)), which expresses ß-geo according to the endogenous FoxO1 pattern, and collected embryo stages from 7.0dpc to 18.5dpc. We show that the expression of FoxO1 is highly dynamic, starting in the neuroepithelium and then extending into the developing vasculature, including all early stages of heart formation. There is a dramatic switch of expression at 11.5dpc in which most vascular expression is abolished and replaced by skeletal muscle expression. In addition FoxO1 is also expressed in several epithelial structures including the olfactory and otic systems, the cornea and at different levels of the gut depending on developmental stage. At later foetal stages, FoxO1 is upregulated again in the same tissues were it is active during early development, including skeletal muscle, vascular system and neuroepithelium.


Assuntos
Embrião de Mamíferos/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/metabolismo , Feminino , Proteína Forkhead Box O1 , Camundongos , RNA Mensageiro/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...