Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 10(18): 10130-10138, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005369

RESUMO

AIM: The objective of this study is to estimate the current potential geographic distribution of Plebeia flavocincta and to evaluate the influence of climate on the dynamics of suitable habitat availability in the past and in the future. LOCATION: Northeast region of Brazil and dry forest areas. METHODS: The habitat suitability modeling was based on two algorithms, two global circulation models, and six different scenarios. We used this tool to estimate the areas of occurrence in the past (Last Interglacial and Last Glacial Maximum), in the present, and in the future (years 2050 and 2070). RESULTS: According to the models, P. flavocincta had great dynamics in the availability of suitable habitats with periods of retraction and expansion of these areas in the past. Our results suggest that this taxon may benefit in terms of climate suitability gain in Northeast Brazil in the future. In addition, we identified high-altitude areas and the eastern coast as climatically stable. CONCLUSION: The information provided can be used by decision makers to support actions toward protecting and sustainably managing this taxon. Protection measures for this taxon are particularly important because this insect contributes to the local flora and, although our results indicate that the climate may favor this taxon, other factors can negatively affect it, such as high levels of habitat loss due to anthropogenic activities.

2.
PLoS One ; 12(4): e0175725, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28410408

RESUMO

Partamona seridoensis is an endemic stingless bee from the Caatinga, a Neotropical dry forest in northeastern Brazil. Like other stingless bees, this species plays an important ecological role as a pollinator. The aim of the present study was to investigate the genetic structure and evolutionary history of P. seridoensis across its current geographic range. Workers from 84 nests from 17 localities were analyzed for COI and Cytb genic regions. The population structure tests (Bayesian phylogenetic inference, AMOVA and haplotype network) consistently characterized two haplogroups (northwestern and eastern), with little gene flow between them, generating a high differentiation between them as well as among the populations within each haplogroup. The Mantel test revealed no isolation by distance. No evidence of a potential geographic barrier in the present that could explain the diversification between the P. seridoensis haplogroups was found. However, Pleistocene climatic changes may explain this differentiation, since the initial time for the P. seridoensis lineages diversification took place during the mid-Pleistocene, specifically the interglacial period, when the biota is presumed to have been more associated with dry conditions and had more restricted, fragmented geographical distribution. This event may have driven diversification by isolating the two haplogroups. Otherwise, the climatic changes in the late Pleistocene must not have drastically affected the population dynamics of P. seridoensis, since the Bayesian Skyline Plot did not reveal any substantial fluctuation in effective population size in either haplogroup. Considering its importance and the fact that it is an endemic bee from a very threatened Neotropical dry forest, the results herein could be useful to the development of conservation strategies for P. seridoensis.


Assuntos
Abelhas/genética , Mudança Climática , Animais , Teorema de Bayes , Abelhas/classificação , Evolução Biológica , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Florestas , Fluxo Gênico , Variação Genética , Haplótipos , Filogenia , Filogeografia , Dinâmica Populacional , Análise de Sequência de DNA
3.
Phytochemistry ; 116: 149-161, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25771507

RESUMO

Catasetum is a neotropical orchid genus that comprises about 160 dioecious species with a remarkable sexual dimorphism in floral morphology. Flowers of Catasetum produce perfumes as rewards, which are collected only by male euglossine bees. Currently, floral scents are known to be involved in the selective attraction of specific euglossine species. However, sexual dimorphism in floral scent and its eventual role in the pollination of Catasetum species have never been investigated. Here, we have investigated the pollination of Catasetum uncatum and asked: (1) Is floral scent a sexual dimorphic trait? (2) Does pollinarium removal/deposition affect scent emission? (3) Does sexual dimorphism in floral scent and changed scent emission have implications with regard to the behaviour of the pollinators? The frequency and behaviour of floral visitors were observed in non-manipulated flowers (both flower sexes) and in manipulated flowers (pistillate only) in which pollinaria were deposited. Scents of staminate and pistillate flowers (both manipulated and non-manipulated) were collected by using dynamic headspace methods and analysed chemically. Electrophysiological analyses were performed to detect compounds triggering antennal depolarisation in the euglossine species. C. uncatum is pollinated mainly by males of Euglossa nanomelanotricha. Pollinators were more frequent in pistillate than in staminate inflorescences. Bees approaching staminate flowers frequently flew away without visiting them, a behavioural pattern not observed in pistillate flowers. In the chemical analyses, we recorded 99 compounds, 31 of which triggered antennal depolarisation in pollinators. Multivariate analyses with the electrophysiological-active compounds did not detect differences between the scent composition of staminate and pistillate flowers. Pollinarium removal or deposition resulted in diminished scent emission within 24h in staminate and pistillate flowers, respectively. Surprisingly, bees discriminated pollinated from non-pollinated pistillate flowers as early as 2h after pollination. The rapid loss in the attractiveness of flowers following pollinarium removal/deposition can be interpreted as a strategy to direct pollinators to non-pollinated flowers. We have found no evidence that euglossine males discriminate staminate from pistillate flowers by means of floral scent. Instead, we speculate that bees use visual cues, such as sex dimorphic traits, to discriminate flowers of different sexes. Together, our results provide interesting insights into the evolution of floral signals in gender-dimorphic species and into its significance in plant reproductive biology.


Assuntos
Abelhas , Orchidaceae/química , Polinização/fisiologia , Terpenos/química , Terpenos/isolamento & purificação , Compostos Orgânicos Voláteis/análise , Animais , Brasil , Flores/química , Masculino , Estrutura Molecular , Perfumes/análise , Compostos Orgânicos Voláteis/química
4.
J Chem Ecol ; 40(10): 1126-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25315355

RESUMO

Chemical signals emitted by the plant frequently mediate host-plant localization in specialized animal - plant associations. Studying the interdependent highly specialized association of the narrowly oligolectic bee pollinator Protodiscelis palpalis (Colletidae, Neopasiphaeinae) with Hydrocleys martii (Alismataceae) in ephemeral aquatic water bodies in semi-arid Caatinga of Brazil, we asked if specific volatile compounds produced by the flowers mediate pollinator attraction. The yellow Hydrocleys flowers are the sole pollen and nectar resources, and mating sites for the bees. We analyzed the floral scents of this species and of the closely related H. nymphoides, which is not visited by P. palpalis, and tested the main volatile compounds of both species under field conditions to evaluate their attractiveness to bees of P. palpalis. Methoxylated aromatics were the dominant floral scent components in both species, but each species exhibited a characteristic scent profile. Dual choice bioassays using artificial flowers made of yellow and blue adhesive paper clearly revealed that ρ-methylanisole alone, the dominant volatile of H. martii, attracted significantly more bees than unbaited flowers. This compound represents an olfactory communication channel used by the plant that lures its effective oligolectic pollinators to its flowers. Yellow artificial flowers baited significantly more bees than blue ones. Our study reinforces the recent findings that specific compounds in complex floral scent bouquets are crucial for host-plant location in oligolectic bees.


Assuntos
Alismataceae/fisiologia , Abelhas/fisiologia , Flores/fisiologia , Polinização , Compostos Orgânicos Voláteis/metabolismo , Animais , Feminino , Odorantes/análise , Compostos Orgânicos Voláteis/análise
5.
J Chem Ecol ; 38(3): 315-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22392085

RESUMO

Flower localization in darkness is a challenging task for nocturnal pollinators. Floral scents often play a crucial role in guiding them towards their hosts. Using common volatile compounds of floral scents, we trapped female nocturnal Megalopta-bees (Halictidae), thus uncovering olfactory cues involved in their search for floral resources. Applying a new sampling method hereby described, we offer novel perspectives on the investigation of nocturnal bees.


Assuntos
Abelhas/fisiologia , Flores/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Sinais (Psicologia) , Escuridão , Feminino , Odorantes/análise , Olfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...