Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 40(13): 1387-1400, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30715728

RESUMO

Thirty-six stable complexes of formic acid with formaldehydes and thioformaldehydes were determined on the potential energy surface, in which the XCHO···HCOOH complexes are found to be more stable than the XCHS···HCOOH counterparts, with X = H, F, Cl, Br, CH3 , NH2 . All complexes are stabilized by hydrogen bonds, and their contribution to the total stabilization energy of the complexes increases in going from C-H···S to C-H···O to O-H···S and finally to O-H···O. Remarkably, a significant blueshift of Csp2 -H bond by 81-96 cm-1 in the Csp2 -H···O hydrogen bond has hardly ever been reported, and a considerable redshift of O-H stretching frequency by 206-544 cm-1 in the O-H···O/S hydrogen bonds is also predicted. The obtained results in our present work and previous literatures support that a distance contraction and a stretching frequency blueshift of C-H bond involving hydrogen bond depend mainly on its polarity and gas phase basicity of proton acceptor, besides the rearrangement of electron density due to complex formation. Markedly, we suggest the ratio of deprotonation enthalpy to proton affinity (R c ) as an indicator to prospect for classification of hydrogen bonds. The symmetry adapted perturbation theory results show a larger role of attractive electrostatic term in XO-n as compared to that in XS-n and the electrostatic interaction is overwhelming dispersion or induction counterparts in stabilizing XO-n and XS-n, with n = 1, 2, 3. © 2019 Wiley Periodicals, Inc.

2.
Biochim Biophys Acta ; 1858(11): 2647-2661, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27475296

RESUMO

Fluorescence spectroscopy and microscopy have been utilized as tools in membrane biophysics for decades now. Because phospholipids are non-fluorescent, the use of extrinsic membrane probes in this context is commonplace. Among the latter, 1,6-diphenylhexatriene (DPH) and its trimethylammonium derivative (TMA-DPH) have been extensively used. It is widely believed that, owing to its additional charged group, TMA-DPH is anchored at the lipid/water interface and reports on a bilayer region that is distinct from that of the hydrophobic DPH. In this study, we employ atomistic MD simulations to characterize the behavior of DPH and TMA-DPH in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and POPC/cholesterol (4:1) bilayers. We show that although the dynamics of TMA-DPH in these membranes is noticeably more hindered than that of DPH, the location of the average fluorophore of TMA-DPH is only ~3-4Å more shallow than that of DPH. The hindrance observed in the translational and rotational motions of TMA-DPH compared to DPH is mainly not due to significant differences in depth, but to the favorable electrostatic interactions of the former with electronegative lipid atoms instead. By revealing detailed insights on the behavior of these two probes, our results are useful both in the interpretation of past work and in the planning of future experiments using them as membrane reporters.


Assuntos
Colesterol/química , Difenilexatrieno/análogos & derivados , Difenilexatrieno/química , Corantes Fluorescentes/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fluorescência , Polarização de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Fluidez de Membrana , Eletricidade Estática , Termodinâmica , Água/química
3.
Int J Mol Sci ; 14(7): 14724-43, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23860208

RESUMO

T-20 and T-1249 fusion inhibitor peptides were shown to interact with 1-palmitoyl-2-oleyl-phosphatidylcholine (POPC) (liquid disordered, ld) and POPC/cholesterol (1:1) (POPC/Chol) (liquid ordered, lo) bilayers, and they do so to different extents. Although they both possess a tryptophan-rich domain (TRD), T-20 lacks a pocket binding domain (PBD), which is present in T-1249. It has been postulated that the PBD domain enhances FI interaction with HIV gp41 protein and with model membranes. Interaction of these fusion inhibitor peptides with both the cell membrane and the viral envelope membrane is important for function, i.e., inhibition of the fusion process. We address this problem with a molecular dynamics approach focusing on lipid properties, trying to ascertain the consequences and the differences in the interaction of T-20 and T-1249 with ld and lo model membranes. T-20 and T-1249 interactions with model membranes are shown to have measurable and different effects on bilayer structural and dynamical parameters. T-1249's adsorption to the membrane surface has generally a stronger influence in the measured parameters. The presence of both binding domains in T-1249 appears to be paramount to its stronger interaction, and is shown to have a definite importance in membrane properties upon peptide adsorption.


Assuntos
Colesterol/química , Inibidores da Fusão de HIV/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Fosfatidilcolinas/química , Enfuvirtida , HIV/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Humanos , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...