Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Exp Biol Med (Maywood) ; 248(22): 2039-2044, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38058027

RESUMO

Arthritogenic alphaviruses are mosquito-borne viruses that cause a debilitating rheumatic disease characterized by fever, headache, rash, myalgia, and polyarthralgia with the potential to evolve into a severe and very prolonged illness. Although these viruses have been geographically restricted by vector hosts and reservoirs, recent epidemics have revealed the risks of their spread worldwide. In this review, we aim to discuss the protective and pathological roles of macrophages during the development of arthritis caused by alphaviruses. The progression to the chronic phase of the disease is related to the extension of viral replication and the maintenance of articular inflammation, in which the cellular infiltrate is predominantly composed of macrophages. We explore the possible implications of macrophage polarization to M1/M2 activation phenotypes, drawing a parallel between alphavirus arthritis and rheumatoid arthritis (RA), a chronic inflammatory disease that also affects articular tissues. In RA, it is well established that M1 macrophages contribute to tissue damage and inflammation, while M2 macrophages have a role in cartilage repair, so modulating the M1/M2 macrophage ratio is being considered as a strategy in the treatment of this disease. In the case of alphavirus-induced arthritis, the picture is more complex, as proinflammatory factors derived from M1 macrophages contribute to the antiviral response but cause tissue damage, while M2 macrophages may contribute to tissue repair but impair viral clearance.


Assuntos
Infecções por Alphavirus , Alphavirus , Artrite Reumatoide , Animais , Humanos , Macrófagos , Inflamação
2.
J Neuroimmunol ; 367: 577847, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35398724

RESUMO

Remote ischemic conditioning (RIC) is a novel promising therapy for treatment of neurological diseases, including ischemic stroke. RIC consists of short cycles of ischemia in a distant non-vital organ that may protect other organs against ischemia. Extensive experimental data and some few clinical trials support the neuroprotective role of RIC in ischemic stroke. Nevertheless, the circulating factors involved in this inter-organ communication and neuroprotection are not clarified. This pilot study in humans characterized the innate and adaptive circulating immune cell populations following RIC. This analysis has a particular focus at 24 h after RIC to avoid circadian influence. In silico functional analysis of mass spectrometry data identified 15 immune-related proteins. Our results reveal an immune response following RIC.


Assuntos
Precondicionamento Isquêmico , AVC Isquêmico , Voluntários Saudáveis , Humanos , Isquemia , Precondicionamento Isquêmico/métodos , Projetos Piloto
3.
Medicina (Kaunas) ; 55(7)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284530

RESUMO

Tamoxifen is a drug that is often used in the clinical management of breast cancer. CYP2D6 is a key metabolizing enzyme that is involved in the conversion of tamoxifen to its active drug metabolites. CYP2D6 has several alleles that metabolize tamoxifen and other drugs at different rates that can alter therapeutic impact, a characteristic that renders it one of the most studied enzymes in the field of pharmacogenetics. Background and objectives: Portugal has no implemented measures based on pharmacogenomics analysis prior to therapy that might function as a cultural sample control when analyzing the individual and economic factors present in clinical practice paradigms. Therefore, we aim to investigate the impact of CYP2D6 genotyping of the tamoxifen metabolizing enzymes in the clinical management of breast cancer patients. Materials and Methods: Qualitative/quantitative studies regarding the impact of pharmacogenomics in breast cancer; personal interviews in different Portuguese laboratories within hospital setting using a survey. Analysis of data through interviews to management board and/or decision makers from major oncological centers. Results: Reasons for common adoption of pharmacogenomics practice are contradictory and based both in economic factors and cultural/clinical bias. Conclusions: This research study identifies specific cultural and/or clinical bias that act as obstacles to pharmacogenomic implementation and proposes viable courses of action that might bring about change in cultural/medical habits.


Assuntos
Citocromo P-450 CYP2D6/análise , Guias como Assunto/normas , Farmacogenética/normas , Tamoxifeno/normas , Adulto , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Citocromo P-450 CYP2D6/genética , Prova Pericial , Feminino , Humanos , Farmacogenética/métodos , Portugal , Sensibilidade e Especificidade , Inquéritos e Questionários , Tamoxifeno/uso terapêutico
4.
Cells ; 8(4)2019 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31014000

RESUMO

The most common cystic fibrosis-causing mutation (F508del, present in ~85% of CF patients) leads to CFTR misfolding, which is recognized by the endoplasmic reticulum (ER) quality control (ERQC), resulting in ER retention and early degradation. It is known that CFTR exit from the ER is mediated by specific retention/sorting signals that include four arginine-framed tripeptide (AFT) retention motifs and a diacidic (DAD) exit code that controls the interaction with the COPII machinery. Here, we aim at obtaining a global view of the protein interactors that regulate CFTR exit from the ER. We used mass spectrometry-based interaction proteomics and bioinformatics analyses to identify and characterize proteins interacting with selected CFTR peptide motifs or full-length CFTR variants retained or bypassing these ERQC checkpoints. We conclude that these ERQC trafficking checkpoints rely on fundamental players in the secretory pathway, detecting key components of the protein folding machinery associated with the AFT recognition and of the trafficking machinery recognizing the diacidic code. Furthermore, a greater similarity in terms of interacting proteins is observed for variants sharing the same folding defect over those reaching the same cellular location, evidencing that folding status is dominant over ER escape in shaping the CFTR interactome.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/química , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Mutação , Dobramento de Proteína , Transporte Proteico , Proteômica , Mucosa Respiratória/metabolismo
5.
Cell Mol Life Sci ; 75(24): 4495-4509, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30066085

RESUMO

Misfolded F508del-CFTR, the main molecular cause of the recessive disorder cystic fibrosis, is recognized by the endoplasmic reticulum (ER) quality control (ERQC) resulting in its retention and early degradation. The ERQC mechanisms rely mainly on molecular chaperones and on sorting motifs, whose presence and exposure determine CFTR retention or exit through the secretory pathway. Arginine-framed tripeptides (AFTs) are ER retention motifs shown to modulate CFTR retention. However, the interactions and regulatory pathways involved in this process are still largely unknown. Here, we used proteomic interaction profiling and global bioinformatic analysis to identify factors that interact differentially with F508del-CFTR and F508del-CFTR without AFTs (F508del-4RK-CFTR) as putative regulators of this specific ERQC checkpoint. Using LC-MS/MS, we identified kinesin family member C1 (KIFC1) as a stronger interactor with F508del-CFTR versus F508del-4RK-CFTR. We further validated this interaction showing that decreasing KIFC1 levels or activity stabilizes the immature form of F508del-CFTR by reducing its degradation. We conclude that the current approach is able to identify novel putative therapeutic targets that can be ultimately used to the benefit of CF patients.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cinesinas/metabolismo , Mapas de Interação de Proteínas , Proteômica/métodos , Sequência de Aminoácidos , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulação para Baixo , Células HEK293 , Humanos , Cinesinas/genética , Mutação , Dobramento de Proteína , Mapeamento de Interação de Proteínas/métodos , Proteólise
6.
J Biol Chem ; 292(34): 14176-14187, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28663370

RESUMO

Mitochondrial oxidation of nutrients is tightly regulated in response to the cellular environment and changes in energy demands. In vitro studies evaluating the mitochondrial capacity of oxidizing different substrates are important for understanding metabolic shifts in physiological adaptations and pathological conditions, but may be influenced by the nutrients present in the culture medium or by the utilization of endogenous stores. One such influence is exemplified by the Crabtree effect (the glucose-mediated inhibition of mitochondrial respiration) as most in vitro experiments are performed in glucose-containing media. Here, using high-resolution respirometry, we evaluated the oxidation of endogenous or exogenous substrates by cell lines harboring different metabolic profiles. We found that a 1-h deprivation of the main energetic nutrients is an appropriate strategy to abolish interference of endogenous or undesirable exogenous substrates with the cellular capacity of oxidizing specific substrates, namely glutamine, pyruvate, glucose, or palmitate, in mitochondria. This approach primed mitochondria to immediately increase their oxygen consumption after the addition of the exogenous nutrients. All starved cells could oxidize exogenous glutamine, whereas the capacity for oxidizing palmitate was limited to human hepatocarcinoma Huh7 cells and to C2C12 mouse myoblasts that differentiated into myotubes. In the presence of exogenous glucose, starvation decreased the Crabtree effect in Huh7 and C2C12 cells and abrogated it in mouse neuroblastoma N2A cells. Interestingly, the fact that the Crabtree effect was observed only for mitochondrial basal respiration but not for the maximum respiratory capacity suggests it is not caused by a direct effect on the electron transport system.


Assuntos
Metabolismo Energético , Regulação Enzimológica da Expressão Gênica , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Flavoproteínas Transferidoras de Elétrons/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Cinética , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Musculares/enzimologia , Especificidade de Órgãos , Oxirredução , Fosforilação Oxidativa , Ácido Palmítico/metabolismo , Ácido Pirúvico/metabolismo
7.
Data Brief ; 11: 103-110, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28149928

RESUMO

This article presents proteomics data referenced in [1] Using proteomics-based evaluation of red blood cells (RBCs), we have identified differentially abundant proteins associated with Obstructive Sleep Apnea Syndrome (OSA). RBCs were collected from peripheral blood of patients with moderate/severe OSA or snoring at pre- (evening) and post-night (morning) polysomnography, so that proteome variations between these time points could be assessed. RBC cytoplasmic fraction depleted of hemoglobin, using Hemovoid™ system, were analyzed by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), the 2D image software-based analyzed and relevant differentially abundant proteins identified by mass spectrometry (MS). MS identified 31 protein spots differentially abundant corresponding to 21 unique proteins possibly due to the existence of post-translational modification regulations. Functional analysis by bioinformatics tools indicated that most proteins are associated with catalytic, oxidoreductase, peroxidase, hydrolase, ATPase and anti-oxidant activity. At morning a larger numbers of differential proteins including response to chemical stimulus, oxidation reduction, regulation of catalytic activity and response to stress were observed in OSA. The data might support further research in OSA biomarker discovery and validation.

8.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 621-629, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27864139

RESUMO

We have examined the effects of Obstructive Sleep Apnea (OSA) on red blood cell (RBC) proteome variation at evening/morning day time to uncover new insights into OSA-induced RBC dysfunction that may lead to OSA manifestations. Dysregulated proteins mainly fall in the group of catalytic enzymes, stress response and redox regulators such as peroxiredoxin 2 (PRDX2). Validation assays confirmed that at morning the monomeric/dimeric forms of PRDX2 were more overoxidized in OSA RBC compared to evening samples. Six month of positive airway pressure (PAP) treatment decreased this overoxidation and generated multimeric overoxidized forms associated with chaperone/transduction signaling activity of PRDX2. Morning levels of overoxidized PRDX2 correlated with polysomnographic (PSG)-arousal index and metabolic parameters whereas the evening level of disulfide-linked dimer (associated with peroxidase activity of PRDX2) correlated with PSG parameters. After treatment, morning overoxidized multimer of PRDX2 negatively correlated with fasting glucose and dopamine levels. Overall, these data point toward severe oxidative stress and altered antioxidant homeostasis in OSA RBC occurring mainly at morning time but with consequences till evening. The beneficial effect of PAP involves modulation of the redox/oligomeric state of PRDX2, whose mechanism and associated chaperone/transduction signaling functions deserves further investigation. RBC PRDX2 is a promising candidate biomarker for OSA severity and treatment monitoring, warranting further investigation and validation.


Assuntos
Eritrócitos/metabolismo , Peroxirredoxinas/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Adulto , Biomarcadores/metabolismo , Pressão Positiva Contínua nas Vias Aéreas , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo , Fotoperíodo , Polissonografia , Multimerização Proteica , Proteoma/metabolismo , Índice de Gravidade de Doença , Apneia Obstrutiva do Sono/terapia
9.
J. Biol. Chem. ; 292(34): 14176-14187, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15054

RESUMO

Mitochondrial oxidation of nutrients is tightly regulated in response to the cellular environment and changes in energy demands. In vitro studies evaluating the mitochondrial capacity of oxidizing different substrates are important for understanding metabolic shifts in physiological adaptations and pathological conditions, but may be influenced by the nutrients present in the culture medium or by the utilization of endogenous stores. One such influence is exemplified by the Crabtree effect (the glucose-mediated inhibition of mitochondrial respiration) as most in vitro experiments are performed in glucose-containing media. Here, using high-resolution respirometry, we evaluated the oxidation of endogenous or exogenous substrates by cell lines harboring different metabolic profiles. We found that a 1-h deprivation of the main energetic nutrients is an appropriate strategy to abolish interference of endogenous or undesirable exogenous substrates with the cellular capacity of oxidizing specific substrates, namely glutamine, pyruvate, glucose, or palmitate, in mitochondria. This approach primed mitochondria to immediately increase their oxygen consumption after the addition of the exogenous nutrients. All starved cells could oxidize exogenous glutamine, whereas the capacity for oxidizing palmitate was limited to human hepatocarcinoma Huh7 cells and to C2C12 mouse myoblasts that differentiated into myotubes. In the presence of exogenous glucose, starvation decreased the Crabtree effect in Huh7 and C2C12 cells and abrogated it in mouse neuroblastoma N2A cells. Interestingly, the fact that the Crabtree effect was observed only for mitochondrial basal respiration but not for the maximum respiratory capacity suggests it is not caused by a direct effect on the electron transport system.

10.
PLoS One ; 7(6): e38353, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719879

RESUMO

The bracken fern Pteridium aquilinum is a plant known to be carcinogenic to animals. Epidemiological studies have shown an association between bracken fern exposure and gastric cancer development in humans. The biological effects of exposure to this plant within the gastric carcinogenesis process are not fully understood. In the present work, effects in the gastric mucosa of mice treated with Pteridium aquilinum were evaluated, as well as molecular mechanisms underlying the synergistic role with Helicobacter pylori infection. Our results showed that exposure to Pteridium aquilinum induces histomorphological modifications including increased expression of acidic glycoconjugates in the gastric mucosa. The transcriptome analysis of gastric mucosa showed that upon exposure to Pteridium aquilinum several glycosyltransferase genes were differently expressed, including Galntl4, C1galt1 and St3gal2, that are mainly involved in the biosynthesis of simple mucin-type carbohydrate antigens. Concomitant treatment with Pteridium aquilinum and infection with Helicobacter pylori also resulted in differently expressed glycosyltransferase genes underlying the biosynthesis of terminal sialylated Lewis antigens, including Sialyl-Lewis(x). These results disclose the molecular basis for the altered pattern of glycan structures observed in the mice gastric mucosa. The gene transcription alterations and the induced glycophenotypic changes observed in the gastric mucosa contribute for the understanding of the molecular mechanisms underlying the role of Pteridium aquilinum in the gastric carcinogenesis process.


Assuntos
Metabolismo dos Carboidratos , Mucosa Gástrica/efeitos dos fármacos , Infecções por Helicobacter/patologia , Helicobacter pylori/isolamento & purificação , Extratos Vegetais/toxicidade , Pteridium/química , Neoplasias Gástricas/etiologia , Animais , Cocarcinogênese , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Imuno-Histoquímica , Camundongos , Fenótipo , Neoplasias Gástricas/complicações
11.
J Proteomics ; 75(13): 4176-83, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22626983

RESUMO

Currently the bottom up approach is the most popular for characterizing protein samples by mass spectrometry. This is mainly attributed to the fact that the bottom up approach has been successfully optimized for high throughput studies. However, the bottom up approach is associated with a number of challenges such as loss of linkage information between peptides. Previous publications have addressed some of these problems which are commonly referred to as protein inference. Nevertheless, all previous publications on the subject are oversimplified and do not represent the full complexity of the proteins identified. To this end we present here SIR (spectra based isoform resolver) that uses a novel transparent and systematic approach for organizing and presenting identified proteins based on peptide spectra assignments. The algorithm groups peptides and proteins into five evidence groups and calculates sixteen parameters for each identified protein that are useful for cases where deterministic protein inference is the goal. The novel approach has been incorporated into SIR which is a user-friendly tool only concerned with protein inference based on imports of Mascot search results. SIR has in addition two visualization tools that facilitate further exploration of the protein inference problem.


Assuntos
Espectrometria de Massas/métodos , Isoformas de Proteínas/análise , Algoritmos , Bases de Dados de Proteínas , Humanos , Proteômica/métodos , Software , Espectrometria de Massas em Tandem/métodos
12.
J Cell Mol Med ; 16(7): 1474-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21883895

RESUMO

Mucin glycoproteins are major secreted or membrane-bound molecules that, in cancer, show modifications in both the mucin proteins expression and in the O-glycosylation profile, generating some of the most relevant tumour markers in clinical use for decades. Thus far, the identification of these biomarkers has been based on the detection of either the protein or the O-glycan modifications. We therefore aimed to identify the combined mucin and O-glycan features, that is, specific glycoforms, in an attempt to increase specificity of these cancer biomarkers. Using in situ proximity ligation assays (PLA) based on existing monoclonal antibodies directed to MUC1, MUC2, MUC5AC and MUC6 mucins and to cancer-associated carbohydrate antigens Tn, Sialyl-Tn (STn), T, Sialyl-Le(a) (SLe(a)) and Sialyl-Le(x) (SLe(x)) we screened a series of 28 mucinous adenocarcinomas from different locations (stomach, ampulla of Vater, colon, lung, breast and ovary) to detect specific mucin glycoforms. We detected Tn/STn/SLe(a)/SLe(x)-MUC1 and STn/SLe(a)/SLe(x)-MUC2 glycoforms in ≥50% of the cases, with a variable distribution among organs. Some new glycoforms-T/SLe(a)-MUC2, STn/T/SLe(a) SLe(x)-MUC5AC and STn/T/SLe(a)/SLe(x)-MUC6-were identified for the first time in the present study in a variable percentage of cases from different organs. In conclusion, application of the PLA technique allowed sensitive detection of specific aberrant mucin glycoforms in cancer, increasing specificity to the use of antibodies either to the mucin protein backbone or to the O-glycan haptens alone.


Assuntos
Biomarcadores Tumorais/análise , Mucina-5AC/análise , Mucina-1/análise , Mucina-2/análise , Mucina-6/análise , Neoplasias/diagnóstico , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/patologia , Antígenos Glicosídicos Associados a Tumores/análise , Antígenos Glicosídicos Associados a Tumores/metabolismo , Mama/patologia , Antígeno CA-19-9 , Colo/patologia , Imunofluorescência , Gangliosídeos/análise , Gangliosídeos/metabolismo , Glicosilação , Humanos , Imuno-Histoquímica , Pulmão/patologia , Neoplasias/patologia , Oligossacarídeos/análise , Oligossacarídeos/metabolismo , Antígeno Sialil Lewis X
13.
Glycoconj J ; 27(1): 61-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19757028

RESUMO

The secretor (Se)/nonsecretor (se) histo-blood group variation depends on the action of the FUT2 enzyme and has major implications for human susceptibility to infections. To characterize the functionality of FUT2 variants, we assessed the correlation between saliva phenotypes and sequence variation at the FUT2 gene in sixty seven individuals from northern Portugal. While most non-secretor haplotypes were found to carry the 428G > A nonsense mutation in association with a 739G > A missense substitution, we have also identified a recombinant haplotype carrying the 739*A allele together with the efficient 428*G variant in individuals with the Se phenotype. This finding suggested, in contrast to previous results, that the 739*A allele encodes an efficient Se allele. To test this hypothesis we evaluated the in vivo enzyme activity of full coding expression constructs in transient transfection of CHO-K1 cells using FACS (fluorescence-activated cell sorting) analysis and expression of type 2 and type 3 chain H structures as read out. We detected FUT2 activity for the 739*A expression construct, demonstrating that the 739G > A substitution is indeed not inactivating. In accordance with the hypothesis that FUT2 is under long standing balancing selection, we estimated that the time depth of FUT2 global genetic variation is as old as 3 million years. Age estimates of specific variants suggest that the 428G > A mutation occurred at least 1.87 million years ago while the 739G > A substitution is about 816,000 years old. The 385A > T missense mutation underlying the non-secretor phenotype in East Asians appears to be more recent and is likely to have occurred about 256,000 years ago.


Assuntos
Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Variação Genética , Infecções/enzimologia , Alelos , Animais , Sequência de Bases , Células CHO , Cricetinae , Cricetulus , Haplótipos/genética , Humanos , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Polimorfismo Genético , Saliva/enzimologia , Transfecção , Galactosídeo 2-alfa-L-Fucosiltransferase
14.
FEMS Immunol Med Microbiol ; 56(3): 223-32, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19519784

RESUMO

Helicobacter pylori is recognized as the main cause of gastritis and is associated with gastric carcinogenesis. Syndecan-4 represents the major source of heparan sulfate (HS) in the gastric cells. HS proteoglycans expressed on the cell surface constitute targets for H. pylori at the early stage of infection. The aim of this study was to determine whether H. pylori induction of syndecan-4 expression is affected by the virulence characteristics of the infecting strain, namely the cytotoxic-associated gene (cag) pathogenicity island (PAI). We observed that individuals infected with highly pathogenic H. pylori strains express syndecan-4 in the foveolar epithelium of the gastric mucosa. The association between the cagPAI status of the infecting strain and syndecan-4 expression was further demonstrated by infection of gastric epithelial cell lines with a panel of cagPAI(+) and cagPAI(-)H. pylori strains, showing that expression of syndecan-4 was significantly increased in response to infection with the highly pathogenic strains. Moreover, infection of gastric cells with cagA and cagE mutant strains further confirmed that syndecan-4 induction is dependent on an intact cagPAI. The present study shows that highly pathogenic H. pylori strains induce syndecan-4 expression, both in human gastric mucosa and in gastric cell lines, in a cagPAI-dependent manner.


Assuntos
Aderência Bacteriana , Células Epiteliais/microbiologia , Ilhas Genômicas , Helicobacter pylori/patogenicidade , Sindecana-4/biossíntese , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Mucosa Gástrica/patologia , Perfilação da Expressão Gênica , Helicobacter pylori/genética , Humanos
15.
J Clin Invest ; 118(6): 2325-36, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18483624

RESUMO

Chronic Helicobacter pylori infection is recognized as a cause of gastric cancer. H. pylori adhesion to gastric cells is mediated by bacterial adhesins such as sialic acid-binding adhesin (SabA), which binds the carbohydrate structure sialyl-Lewis x. Sialyl-Lewis x expression in the gastric epithelium is induced during persistent H. pylori infection, suggesting that H. pylori modulates host cell glycosylation patterns for enhanced adhesion. Here, we evaluate changes in the glycosylation-related gene expression profile of a human gastric carcinoma cell line following H. pylori infection. We observed that H. pylori significantly altered expression of 168 of the 1,031 human genes tested by microarray, and the extent of these alterations was associated with the pathogenicity of the H. pylori strain. A highly pathogenic strain altered expression of several genes involved in glycan biosynthesis, in particular that encoding beta3 GlcNAc T5 (beta3GnT5), a GlcNAc transferase essential for the biosynthesis of Lewis antigens. beta3GnT5 induction was specific to infection with highly pathogenic strains of H. pylori carrying a cluster of genes known as the cag pathogenicity island, and was dependent on CagA and CagE. Further, beta3GnT5 overexpression in human gastric carcinoma cell lines led to increased sialyl-Lewis x expression and H. pylori adhesion. This study identifies what we believe to be a novel mechanism by which H. pylori modulates the biosynthesis of the SabA ligand in gastric cells, thereby strengthening the epithelial attachment necessary to achieve successful colonization.


Assuntos
Adesinas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Oligossacarídeos/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Sequência de Carboidratos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , Ligantes , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Antígeno Sialil Lewis X , Transfecção
16.
Cancer Lett ; 249(2): 157-70, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-16965854

RESUMO

The activation of an abnormal glycosylation pathway in cancer cells leads to the formation of the sialyl-Tn antigen, blocking regular carbohydrate chain elongation. Sialyl-Tn antigen is rarely expressed in normal tissues but is aberrantly expressed in a variety of carcinomas, where it constitutes a marker of poor prognosis. Although the clinical significance of sialyl-Tn is well characterized, a functional role for this glycan and its contribution to cancer progression remain to be elucidated. This study evaluates the capability of sialyl-Tn to modify processes like cell cycle, apoptosis, actin cytoskeleton dynamics, adhesion and motility on ECM components, cell-cell aggregation and invasion. De-novo expression of sialyl-Tn leads to major morphological and cell behavior alterations in gastric carcinoma cells which were reverted by specific antibody blockage. Sialyl-Tn antigen is able to modulate a malignant phenotype inducing a more aggressive cell behavior, such as decreased cell-cell aggregation and increased ECM adhesion, migration and invasion.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Carcinoma/metabolismo , Neoplasias Gástricas/metabolismo , Antígenos de Neoplasias/metabolismo , Apoptose , Carcinoma/patologia , Adesão Celular , Agregação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos , Mucina-1 , Mucinas/metabolismo , Invasividade Neoplásica , Fenótipo , Sialiltransferases/genética , Neoplasias Gástricas/patologia
17.
Biotechnol Prog ; 20(1): 248-54, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14763849

RESUMO

The aim of this research effort was to investigate the role of various sugar substrates in the growth medium upon thermotolerance and upon survival during storage after freeze-drying of Lactobacillus bulgaricus. Addition of the sugars tested to the growth medium, and of these and sorbitol to the drying medium (skim milk) was investigated so as to determine whether a relationship exists between growth and drying media, in terms of protection of freeze-dried cells throughout storage. The lowest decrease in viability of L. bulgaricus cells after freeze-drying was obtained when that organism was grown in the presence of mannose. However, L. bulgaricus clearly survived better during storage when cells had been grown in the presence of fructose, lactose or mannose rather than glucose (the standard sugar in the growth medium). A similar effect could not be observed in terms of thermotolerance; in this case, the growth medium supplemented with lactose was found to yield cells bearing the highest heat resistance. Supplementation of the drying medium with glucose, fructose, lactose, mannose or sorbitol led in most cases to enhancement of protection during storage, to a degree that was growth medium-dependent.


Assuntos
Metabolismo dos Carboidratos , Crioprotetores/metabolismo , Dessecação/métodos , Liofilização/métodos , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Polissacarídeos Bacterianos/biossíntese , Adaptação Fisiológica , Técnicas de Cultura de Células/métodos , Divisão Celular , Sobrevivência Celular , Lactobacillus/citologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...