Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141576, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462180

RESUMO

Bullfrog tadpoles, Aquarana catesbeiana, were exposed to settleable particulate matter (SePM), (1 g L-1, 96 h) and their organs were collected for analysis of metal/metalloid, oxidative stress and neurotoxicity in liver, muscle, kidney and brain. The SePM water of the exposed groups contained 18 of the 28 metals/metalloids detected in ambient particulate matter (APM). Fe56 and Al were those that presented the highest concentrations, Cr, Mn, Pb and Cu increased from 10 to 20 times and Ti, V, Sr, Rb, Cd, Sn and Ni increased from 1 to 3 times compared to the control. Bioaccumulation of metals/metalloids in the exposure water varied significantly between organs, with the muscle and liver showing the highest concentrations of metals, followed by the brain. Lipoperoxidation and malondialdehyde increased only in muscle, while carbonyl proteins increased only in the liver and brain. Regarding nitric oxide synthase, there was an increase in the liver and brain in the group exposed to SePM. Catalase activity decreased in the liver and muscle, while the activity of glutathione peroxidase, increased in the liver and kidney and decreased in muscle. Glutathione S-transferase, which is mainly responsible for detoxification, increased in the liver and decreased in muscle and the kidney. Cholinesterase activity increased only in the muscle. The results indicate oxidative stress, due to oxidation catalyzed by metals, components of SePM. Thus, the results contribute to the understanding that SePM has a deleterious effect on the aquatic environment, negatively affecting bullfrog tadpoles, in different ways and levels in relation to the analyzed organs.


Assuntos
Metaloides , Poluentes Químicos da Água , Animais , Rana catesbeiana , Material Particulado/análise , Larva , Metais/análise , Estresse Oxidativo , Água/farmacologia , Metaloides/análise , Poluentes Químicos da Água/análise
2.
Environ Sci Pollut Res Int ; 29(2): 1975-1984, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34363154

RESUMO

The amphibian populations have faced a drastic decline over the past decades. This decline has been associated with the presence of contaminants in the environment, among other environmental stressors. The present study tested the responses following the exposure to lithium (2.5 mg L-1) and selenium (10µg L-1), both isolated and as a mixture, on the metabolic status of the tail muscle of premetamorphic American bullfrog (Lithobates catesbeianus) through the assessment of the total protein content, mobilization of glucose and triglycerides, and the activity of lactate dehydrogenase (LDH). The exposure followed a 21-day assay with two sampling periods (on the 7th and 21st day after the onset of exposure) to evaluate the effects over time. The group exposed to the mixture presented a statistically decreased LDH activity (P < 0.05) in both sampling periods. The presence of selenium elicited a statistically significant increase (P < 0.05) in the glucose mobilization after 7 days of exposure. After 21 days, the animals exposed to selenium presented levels of glucose mobilization comparable to the control group. The mobilization of glucose and triglycerides remained similar to the control group for the animals exposed to lithium and to the mixture in both periods of sampling (P > 0.05). The total protein content did not show any statistical difference in the treated groups throughout the experiment (P > 0.05). The presented results highlight the importance of the assessment of mixtures that can occur in the environment, since the combination of contaminants may elicit distinct toxicity compared with the effects triggered by the chemicals isolated.


Assuntos
Selênio , Poluentes Químicos da Água , Animais , Larva , Lítio , Músculos/química , Rana catesbeiana , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Chemosphere ; 275: 130000, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33667769

RESUMO

Lithobates catesbeianus tadpoles were exposed for 96 h to water from two sites of the Sorocaba River (summer and winter), Ibiúna (PI) and Itupararanga reservoir (PIR) that contained metals. In the liver, in PI, the glutathione peroxidase (GPx) decreased, and the glutathione S-transferase (GST) and carbonyl proteins (PCO) increased. In PIR, the glutathione reduced (GSH) increased, while there was a decrease in catalase (CAT), GPx, GST, PCO, and superoxide dismutase (SOD). In winter, GPx and GST increased in both points. Regarding the kidneys, lipoperoxidation (LPO) levels and GST decreased, while GSH increased in the summer. In the winter, LPO increased in PI. In the muscle, in the summer, there was an increase in GSH and GST and change in PCO. In the winter, the levels of PCO increased and CAT decreased in PIR. The area and volume of the hepatocyte and nucleus area increased in the summer and decreased in the winter. Hepatic melanin decreased in the summer after exposure to PIR water. There were the systemic effects of Sorocaba River water exposure at different times of the year with alterations in biomarkers at different levels, in which kidney shows highest Integrated Response of Biomarkers (IBR) value followed by liver and muscle. Biochemical biomarkers were more sensitive than morphological ones. The more sensitive biochemical markers were MT, PCO, GST and LPO. These effects confirm the hypothesis of metabolic alteration in bullfrog tadpoles by the Sorocaba River water.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Larva/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo , Rana catesbeiana/metabolismo , Superóxido Dismutase/metabolismo , Água , Poluentes Químicos da Água/toxicidade
4.
Ecotoxicol Environ Saf ; 207: 111101, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905937

RESUMO

To regulate the presence of contaminants in Brazilian water, the Brazilian Environmental Council (CONAMA) promulgates regulations regarding the concentrations of given compounds that are supposed to be safe for aquatic life. Considering these regulations, this study tested the effects of considered safe levels of lithium (2.5 mgL-1) and selenium (0.01 mgL-1), isolated and mixed, on the American bullfrog (Lithobates catesbeianus) tadpoles. The evaluation was done through the use of biomarkers of larval development as total wet weight (TWW), snout-vent-length (SVL), hind-limb-length (HLL), activity level (AL), histologic evaluation of the thyroid gland and the mortality rate. The tadpoles were allocated into four groups (n = 20 each): a control group (CT); a group exposed to lithium (LI), a group exposed to selenium (SE), and a group exposed to both lithium and selenium (SELI). The whole assay was carried out over 21 days, with two rounds of data collection (on 7th and 21st day) to evaluate the responses over time. A statistical reduction in the AL was observed in the tadpoles from the LI and SELI groups after 7 days of exposure, the same pattern was observed after 21 days. Histological analyses of the thyroid gland showed signs of up-regulation (i.e. statistic reduction in number and area of the follicles, as well a significant reduction in the area of the gland) in all exposed groups, which represents an endocrine response as an adaptative strategy to deal with polluted aquatic environment. The stress triggered by the polluted medium is discussed.


Assuntos
Lítio/toxicidade , Metamorfose Biológica/efeitos dos fármacos , Rana catesbeiana/fisiologia , Selênio/toxicidade , Poluentes Químicos da Água/toxicidade , Aceleração , Animais , Bioensaio , Brasil , Poluentes Ambientais , Larva/fisiologia , Metamorfose Biológica/fisiologia , Glândula Tireoide , Estados Unidos
5.
Environ Pollut ; 270: 116086, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248831

RESUMO

The presence of chemicals and the destruction of freshwater habitats have been addressed as one of the reasons for the decline in the amphibians' populations worldwide. Considering the threat that these animals have been suffering in tropical regions, the present study tested if the Brazilian legislation, concerning the permissive levels of lithium and selenium in water bodies and effluents, warrants the protection of aquatic life. To do so, we assessed the metabolic, immunologic, and histopathologic alterations in liver samples of American bullfrog (Lithobates catesbeianus), at the premetamorphic stage, through biomarkers indicative of general energetic status, i.e., glucose, lipid, and protein metabolism using biochemical and histochemical approaches. The immunologic responses were assessed by the quantification of melanomacrophage centres (MMCs); the histopathologic evaluation of the liver sections was also performed. The assay was carried out over 21 days with two periods of sampling (after 7 and 21 days) to assess the effects of exposure over time. The animals were exposed to the considered safe levels of lithium (2.5 mg L-1) and selenium (10 µg L-1), both, isolated and mixed. The exposed animals showed alterations in glucose and lipid metabolism throughout the experiment. The intense presence of MMCs and histopathological responses are compatible with hepatotoxicity. The toxicity expressed by the employed animal model indicates that the Brazilian environmental legislation for the protection of aquatic life needs to be updated. With this study, we intend to provide data for better environmental policies and bring attention to sublethal effects triggered by the presence of contaminants in the aquatic environment.


Assuntos
Selênio , Animais , Brasil , Larva , Lítio , Rana catesbeiana , Selênio/toxicidade , Estados Unidos
6.
Ecotoxicol Environ Saf ; 196: 110560, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247955

RESUMO

Lithobates catesbeianus tadpoles were exposed to 1 µg L-1 of zinc (Zn), copper (Cu) and cadmium (Cd) alone or combined (1:1 and 1:1:1) for 2 and 16 days. Results showed a significant increase in the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities in the liver, kidney and muscle (except for GPx) in the groups exposed to metal either alone or co-exposed after 2 days compared to the control. After 16 days, SOD, CAT and GST activities decreased significantly in the liver and kidney and GPx activity increased in the liver. Reduced glutathione (GSH) increased in the liver and kidney following combined exposure and decreased after 2 days of metal exposure in the muscle. There were significant increases in lipid hydroperoxide (LPO) levels in the liver, kidney and muscle (2 and 16 days), with the highest levels after metal co-exposure. Cholinesterase (ChE) activity increased significantly in the brain after 2 days of exposure but decreased in the brain (16 days) and muscle (2 days) after exposure to metals, alone and combined. The current study highlighted that the antioxidant system of L. catesbeianus was sensitive to metals and specially to the co-exposure of the three metals, despite presenting differences in the response among tissues. In addition, tadpoles were sensitive at both periods of exposure, but in different modes with stress response (activation, up-regulation) at 2 days and oppression (down-regulation) at 16 days.


Assuntos
Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Exposição Ambiental/análise , Larva/efeitos dos fármacos , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cádmio/toxicidade , Cobre/toxicidade , Rim/efeitos dos fármacos , Rim/metabolismo , Larva/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metais Pesados/metabolismo , Rana catesbeiana , Zinco/toxicidade
7.
Sci Rep ; 8(1): 12397, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120279

RESUMO

Silver nanoparticles (AgNPs) are known mainly because of their bactericidal properties. Among the different types of synthesis, there is the biogenic synthesis, which allows the synergy between the nanocomposites and substances from the organism employed for the synthesis. This study describes the synthesis of AgNPs using infusion of roots (AgNpR) and extract (AgNpE) of the plant Althaea officinalis. After the synthesis through reduction of silver nitrate with compounds of A. officinalis, physico-chemical analyzes were performed by UV-Vis spectroscopy, nanoparticles tracking analysis (NTA), dynamic light scattering (DLS) and scanning electron microscopy (SEM). Toxicity was evaluated through Allium cepa assay, comet test with cell lines, cell viability by mitochondrial activity and image cytometry and minimal inhibitory concentration on pathogenic microorganisms. Biochemical analyzes (CAT - catalase, GPx - glutathione peroxidase e GST - glutationa S-transferase) and genotoxicity evaluation in vivo on Zebrafish were also performed. AgNpE and AgNpR showed size of 157 ± 11 nm and 293 ± 12 nm, polydispersity of 0.47 ± 0.08 and 0.25 ± 0.01, and zeta potential of 20.4 ± 1.4 and 26.5 ± 1.2 mV, respectively. With regard to toxicity, the AgNpE were the most toxic when compared with AgNpR. Biochemical analyzes on fish showed increase of CAT activity in most of the organs, whereas GPx showed few changes and the activity of GST decreased. Also regarding to bactericidal activity, both nanoparticles were effective, however AgNpR showed greater activity. Althaea officinalis can be employed as reducing agent for the synthesis of silver nanoparticles, although it is necessary to consider its potential toxicity and ecotoxicity.


Assuntos
Althaea/química , Nanopartículas Metálicas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Substâncias Redutoras/química , Substâncias Redutoras/farmacologia , Prata , Animais , Anti-Infecciosos , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Dano ao DNA/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Camundongos , Testes de Sensibilidade Microbiana , Extratos Vegetais/toxicidade , Substâncias Redutoras/toxicidade , Prata/química , Toxicologia/métodos , Peixe-Zebra
8.
Chemosphere ; 144: 1862-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26539711

RESUMO

This study evaluated if a concentration of 17α-ethinylestradiol (EE2 - 10 ng L(-1) for 96 h) normally found in Brazilian surface waters exerts any impact on cardiac function of bullfrog tadpoles (25 Gosner stage), Lithobates catesbeianus. During exposure, the animals' activity level (AL -% of active individuals) was monitored twice a day. Then, the in loco heart rate (f(H) - bpm) was determined, as well as the relative ventricular mass (RVM - % of body mass). Afterwards, cardiac ventricles were mounted for isometric force recordings (CS - mN mm(-2)), and determination of the cardiac pumping capacity (CPC - mN mm(-2) min(-1)). EE2 did not affect tadpoles' AL, although it resulted in a tachycardia in animals exposed to EE2 (f(H) = 66 bpm) when compared to controls (f(H) = 52 bpm), suggesting that EE2 acts directly on the cardiac muscle of tadpoles, rather than being a result of an increased cardiac demand due to a higher activity level (i.e., avoidance response). Additionally, EE2 exerted a positive inotropic response, which resulted in a higher CPC, which occurred independently of an increase in the number of myofibrils of EE2-exposed animals, since RVM remained similar between experimental groups. Thus, the increase on cardiac demand induced by the exposure to EE2 elevates considerably the animal energy expenditure, diverting a large amount of energy that tadpoles could use for their growth and development. These alterations can make amphibians more susceptible to predators and reduce the likelihood to reach reproductive stage.


Assuntos
Ecotoxicologia , Meio Ambiente , Poluentes Ambientais/toxicidade , Etinilestradiol/toxicidade , Coração/efeitos dos fármacos , Coração/fisiologia , Rana catesbeiana/fisiologia , Animais , Relação Dose-Resposta a Droga , Larva/efeitos dos fármacos , Larva/fisiologia , Rana catesbeiana/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos
9.
Aquat Toxicol ; 167: 220-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26361357

RESUMO

We analyzed the effect of exposure to 25% 96 h-LC50 of copper at low (24.5 µg L(-1) Cu, pH 4.5), neutral (7.25 µg L(-1) Cu, pH 7.0) and high pH (4.0 µg L(-1) Cu, pH 8.0) at 20 °C on antioxidant defenses and oxidative stress in the liver, gills and white muscle of the fish Prochilodus lineatus. Water at pH 4.5 and 8.0 affected the enzymatic and non-enzymatic antioxidant systems of the liver and gills, but not of the white muscles of P. lineatus, when compared to water at pH 7.0. After Cu exposure, SOD (superoxide dismutase), GPx (glutathione peroxidase), GR (glutathione reductase) and GST (glutathione S-transferase) activities increased and CAT (catalase) activity decreased in the liver at water at pH 4.5 and 8.0. Meanwhile, the activities of SOD, CAT, GPx, GR and GST increased in the gills at these pHs. SOD and CAT activities increased in the white muscle after Cu exposure at pH 8.0 and GPx, GR and GST activities decreased after Cu exposure at pH 4.5 and 8.0. LPO levels decreased in the liver and gills of fish that were exposed to water at pH 4.5 and 8.0 and, after Cu exposure, the LPO level increased in the liver, gills and white muscle of fish that were exposed to water at pH 4.5 and 8.0, when compared to the control group at pH 7.0. The metallothionein (MT) concentration increased in the liver of fish in water at pH 4.5 and 8.0 and the gill of fish in water at pH 8.0. After Cu exposure, MT in the liver and gills was significantly elevated in fish exposed to water at pH 4.5 and 8.0, but remained at levels similar to the control group in the white muscle. These results indicate a differing sensitivity of fish organs and tissues to essential metals, such as copper, and that toxicity may be relevant at environmental concentrations. These results indicate that the effect of Cu on the response of antioxidant defense systems is determined by water pH.


Assuntos
Cobre/toxicidade , Peixes/fisiologia , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Concentração de Íons de Hidrogênio , Fígado/enzimologia , Metalotioneína/metabolismo , Oxirredutases/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-24607634

RESUMO

The aim of this study was to determine whether endemic Antarctic nototheniid fish are able to adjust their liver antioxidant defence system in response to the temperature increase. The activity of the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) enzymes as well as the content of non-enzymatic oxidative stress markers such as reduced glutathione (GSH), lipid peroxidation (LPO) and protein carbonyl (PC) were measured in the liver of two Antarctic fish species, Notothenia rossii and Notothenia coriiceps after 1, 3 and 6days of exposure to temperatures of 0°C and 8°C. The GST activity showed a downregulation in N. rossii after 6days of exposure to the increased temperature. The activity profiles of GST and GR in N. rossii and of GPx in N. coriiceps also changed as a consequence of heating to 8°C. The GSH content increased by heating to 8°C after 3days in N. coriiceps and after 6days in N. rossii. The content of malondialdehyde (MDA), a LPO marker, showed a negative modulation by the heating to 8°C in N. rossii after 3days of exposure to temperatures. Present results show that heating to 8°C influenced the levels and profiles of the antioxidant enzymes and defences over time in the nototheniid fish N. rossii and N. coriiceps.


Assuntos
Aclimatação/fisiologia , Antioxidantes/metabolismo , Fígado/metabolismo , Perciformes/fisiologia , Animais , Regiões Antárticas , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Estresse Oxidativo/fisiologia , Superóxido Dismutase/metabolismo , Temperatura
11.
Chemosphere ; 89(1): 60-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22583787

RESUMO

The current study investigated oxidative stress parameters (enzymes activities, metallothionein content and lipid peroxidation) in freshwater fish, Oreochromis niloticus, tilapia exposure to Monjolinho River (in 4 months of year: January, April, July and November). One critical site in Monjolinho River (site B) was assessed in comparison to a reference site (site A). Water pH and oxygen concentration was lower than that recommended by CONAMA (Brazilian National Environmental Committee), resolution 357/2005 for protection of aquatic communities, and ammonium and the metals Cu, Zn, Mn and Fe (on all months) concentrations were higher than the maximum concentration recommended. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significantly decreased in liver and muscle in tilapia from Monjolinho River, throughout the year, in relation to reference except in gills that SOD activity increased. Glutathione S-transferase (GST) activity was significantly increased in liver of the tilapia from Monjolinho River in all sites, in relation to reference except in gills that GST activity increased in July and decreased in November, suggesting that GST activity could be induced to neutralize the pollutants toxicity. On the other hand, GST activity was significantly decreased in white muscle indicating a toxic effect of pollutants, resulting in a decreased ability of tilapia to perform defense reactions associated to GSTs. The decrease of catalase (CAT) activity in gills of the O. niloticus together with the increase of SOD activity, could explain the increased lipid peroxidation (LPO) level in this organ. Metallothionein levels in liver and gills were significantly high in all sites. Results indicate that the exposure to metals caused severe damage to tissues; despite the consensually assumed antioxidant induction as a sign of exposure to contaminants the effects seem in part to be mediated by suppression of antioxidant system with SOD, CAT and GPx as potential candidates for tissues toxicity biomarkers of pollutants.


Assuntos
Biomarcadores/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Ciclídeos/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Brânquias/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Metalotioneína/metabolismo , Metais/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
12.
Comp Biochem Physiol A Mol Integr Physiol ; 151(3): 437-442, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17537655

RESUMO

We investigated the effect of copper on liver key enzymes of the anaerobic glucose metabolism (hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK; lactate dehydrogenase, LDH) as well as of the pentose pathway (glycose-6-phosphate dehydrogenase, G6PDH) from the fish Prochilodus lineatus. The fish were acclimated at either 20 degrees C or 30 degrees C at pH 7.0, transferred to water at pH 4.5 or 8.0, and exposed to 96 h-CL(50) copper concentrations. Copper accumulation in liver was higher in fish acclimated at 20 degrees C and maintained in water pH 8.0. Three-way analysis of variance revealed a significant effect of temperature on all enzymes, a significant effect of pH on all enzymes except for PK, and a significant effect of copper on only PFK, and LDH in pH 4.5 at 20 degrees C and, at 30 degrees C, on PFK and PK at pH 4.5 and 8.0, HK at pH 4.5 and G6PDH at pH 8.0. There were significant interactions between treatments for many enzymes. These changes suggest that the activity of enzymes in question is modified by a change in ambient water. At least at 30 degrees C, the overall reduction in the glycolytic enzyme activities of copper-exposed fish seems to reduce energy availability via glucose metabolism, thereby contributing to enhance copper toxic effects.


Assuntos
Anaerobiose/efeitos dos fármacos , Cobre/toxicidade , Peixes/metabolismo , Glucose/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Anaerobiose/fisiologia , Animais , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Água Doce , Glucosefosfato Desidrogenase/metabolismo , Hexoquinase/metabolismo , Concentração de Íons de Hidrogênio , L-Lactato Desidrogenase/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Via de Pentose Fosfato/fisiologia , Fosfofrutoquinases/metabolismo , Piruvato Quinase/metabolismo , Temperatura
13.
Ecotoxicol Environ Saf ; 71(1): 86-93, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17936357

RESUMO

The oxidative stress biomarkers of exposure, such as reduced glutathione (GSH), activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and the levels of lipid peroxidation (LPO), were measured in the blood of three cichlid fish (Oreochromis niloticus, Tilapia rendalli, and Geophagus brasiliensis) taken during two seasons from two sites, unpolluted and polluted by industrial effluents, to evaluate the effectiveness of these biomarkers in assessing the impact of water contamination. The LPO levels in the blood were higher in fish from the metal-contaminated site and the chronic exposure led to significant changes in GPx, CAT, and SOD activities in all three cichlid species. The considerable variation of responses in these cichlids to water contamination evidenced differences in sensitivity to the metal contamination and/or in the potential to respond to it highlighting the importance of using a set of related biomarkers to assess the impact of water contamination.


Assuntos
Biomarcadores/sangue , Ciclídeos/sangue , Metais/toxicidade , Rios , Estações do Ano , Poluentes Químicos da Água/toxicidade , Animais , Aquaporina 2 , Brasil , Catalase/sangue , Glutationa Peroxidase/sangue , Hemoglobinas , Peroxidação de Lipídeos , Estresse Oxidativo/fisiologia , Rios/química , Superóxido Dismutase/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...