Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891309

RESUMO

Climate-change-related increases in the frequency and intensity of heatwaves affect viticulture, leading to losses in yield and grape quality. We assessed whether canopy-architecture manipulation mitigates the effects of summer stress in a Mediterranean vineyard. The Vitis vinifera L variety Muscat of Alexandria plants were monitored during 2019-2020. Two canopy shoot-positioning treatments were applied: vertical shoot positioning (VSP) and modulated shoot positioning (MSP). In MSP, the west-side upper foliage was released to promote partial shoot leaning, shading the clusters. Clusters were sampled at pea size (PS), veraison (VER), and full maturation (FM). Measurements included rachis anatomy and hydraulic conductance (Kh) and aquaporins (AQP) and stress-related genes expression in cluster tissues. The results show significant seasonal and interannual differences in Kh and vascular anatomy. At VER, the Kh of the rachis and rachis+pedicel and the xylem diameter decreased but were unaffected by treatments. The phloem-xylem ratio was either increased (2019) or reduced (2020) in MSP compared to VSP. Most AQPs were down-regulated at FM in pedicels and up-regulated at VER in pulp. A potential maturation shift in MSP was observed and confirmed by the up-regulation of several stress-related genes in all tissues. The study pinpoints the role of canopy architecture in berry-water relations and stress response during ripening.

2.
Plants (Basel) ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176836

RESUMO

Climate change in the Mediterranean area is making summers warmer and dryer. Grapevine (Vitis vinifera L.) is mostly important for wine production in Mediterranean countries, and the variety Tempranillo is one of the most cultivated in Spain and Portugal. Drought decreases yield and quality and causes important economic losses. As full irrigation has negative effects on quality and water is scarce in this region, deficit irrigation is often applied. In this research, we studied the effects of two deficit irrigation treatments, Sustained Deficit Irrigation (SDI) and Regulated Deficit Irrigation (RDI), on the transcriptome of grape berries at full maturation, through RNAseq. The expression of differentially regulated genes (DEGs) was also monitored through RT-qPCR along berry development. Most transcripts were regulated by water stress, with a similar distribution of up- and down-regulated transcripts within functional categories (FC). Primary metabolism was the more severely affected FC under water stress, followed by signaling and transport. Almost all DEGs monitored were significantly up-regulated by severe water stress at veraison. The modulation of an auxin response repression factor, AUX22D, by water stress indicates a role of this gene in the response to drought. Further, the expression of WRKY40, a TF that regulates anthocyanin biosynthesis, may be responsible for changes in grape quality under severe water stress.

3.
Plants (Basel) ; 11(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270057

RESUMO

The São Domingos mine is within the Iberian Pyrite Belt, a mining district with large concentrations of polymetallic massive sulfide deposits. Mine waste heaps are considered extreme environments, since they contain high total concentrations of potentially hazardous elements (PHE), which contribute to inhibiting the development of most plants. Autochthonous plant species, such as Cistus salviifolius L., are able to grow naturally in this degraded environment, and may contribute to minimizing the negative chemical impacts and improving the landscape quality. However, the environmental rehabilitation processes associated with the development of these plants (phytostabilization) are very slow, so the use of materials/wastes to improve some physicochemical properties of the matrix is necessary in order to speed up the process. This work studied the effectiveness of the phytostabilization with C. salviifolius of gossan mine wastes from the mine of São Domingos amended with organic and inorganic wastes in order to construct Technosols. The mine wastes have an acid pH (≈3.5), high total concentrations of PHE and low concentrations of organic C and available nutrients. The best vegetative development occurred without visible signs of toxicity in the Technosols containing a mixture of agriculture residues. These treatments allowed the improvement of the soil-plant system providing a better plant cover and improved several chemical properties of mine wastes, helping to speed up the environmental rehabilitation.

4.
Plants (Basel) ; 11(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336709

RESUMO

Grapevine (Vitis vinifera L.) is one of the most economically important crops worldwide, especially due to the economic relevance of wine production. Abiotic stress, such as drought, may contribute to low yield, shifts in quality, and important economic loss. The predicted climate change phenomena point to warmer and dryer Mediterranean environmental conditions; as such, it is paramount to study the effects of abiotic stress on grapevine performance. Deficit irrigation systems are applied to optimize water use efficiency without compromising berry quality. In this research, the effect of two deficit irrigation strategies, sustained deficit irrigation (SDI) and regulated deficit irrigation (RDI), in the grape berry were assessed. The effects of different levels of drought were monitored in Touriga Nacional at key stages of berry development (pea size, véraison, and full maturation) through RNA-Seq transcriptome analysis and by specific differentially expressed genes (DEGs) monitoring through RT-qPCR. Handy datasets were obtained by bioinformatics analysis of raw RNA-Seq results. The dominant proportion of transcripts was mostly regulated by development, with véraison showing more upregulated transcripts. Results showed that primary metabolism is the functional category more severely affected under water stress. Almost all DEGs selected for RT-qPCR were significantly upregulated in full maturation and showed the highest variability at véraison and the lowest gene expression values in the pea size stage.

5.
Front Plant Sci ; 12: 718202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764964

RESUMO

Plant phenotyping is an emerging science that combines multiple methodologies and protocols to measure plant traits (e.g., growth, morphology, architecture, function, and composition) at multiple scales of organization. Manual phenotyping remains as a major bottleneck to the advance of plant and crop breeding. Such constraint fostered the development of high throughput plant phenotyping (HTPP), which is largely based on imaging approaches and automatized data retrieval and processing. Field phenotyping still poses major challenges and the progress of HTPP for field conditions can be relevant to support selection and breeding of grapevine. The aim of this review is to discuss potential and current methods to improve field phenotyping of grapevine to support characterization of inter- and intravarietal diversity. Vitis vinifera has a large genetic diversity that needs characterization, and the availability of methods to support selection of plant material (polyclonal or clonal) able to withstand abiotic stress is paramount. Besides being time consuming, complex and expensive, field experiments are also affected by heterogeneous and uncontrolled climate and soil conditions, mostly due to the large areas of the trials and to the high number of traits to be observed in a number of individuals ranging from hundreds to thousands. Therefore, adequate field experimental design and data gathering methodologies are crucial to obtain reliable data. Some of the major challenges posed to grapevine selection programs for tolerance to water and heat stress are described herein. Useful traits for selection and related field phenotyping methodologies are described and their adequacy for large scale screening is discussed.

6.
Plants (Basel) ; 11(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35009108

RESUMO

Mining activities have turned many areas of the Iberian Pyrite Belt (IPB) into extreme environments with high concentrations of metal(loid)s. These harsh conditions can inhibit or reduce the colonization and/or development of most vegetation. However, some species or populations have developed ecophysiological responses to tolerate stress factors and contaminated soils. The main objectives of this study are: (i) to assess the differences in germination, growth, development and physiological behaviour against oxidative stress caused by metal(loid)s in Lavandula pedunculata (Mill.) Cav. from two different origins (a contaminated area in São Domingos mine, SE of Portugal and an uncontaminated area from Serra do Caldeirão, S of Portugal) under controlled conditions; and (ii) to assess whether it is possible to use this species for the rehabilitation of mine areas of the IPB. After germination, seedlings from São Domingos (LC) and Caldeirão (L) were planted in pots with a contaminated soil developed on gossan (CS) and in pots with an uncontaminated soil (US) under controlled conditions. Multielemental concentrations were determined in soils (total and available fractions) and plants (shoots and roots). Germination rate, shoot height, dry biomass and leaf area were determined, and pigments, glutathione, ascorbate and H2O2 contents were measured in plant shoots. Total concentrations of As, Cr, Cu, Pb and Sb in CS, and As in US exceed the intervention and maximum limits for ecosystem protection and human health. The main results showed that L. pedunculata, regardless of the seed origin, activated defence mechanisms against oxidative stress caused by high concentrations of metal(loid)s. Plants grown from seeds of both origins increased the production of AsA to preserve its reduction levels and kept the contents of GSH stable to maintain the cell's redox state. Plants grown from seeds collected in non-contaminated areas showed a high capacity for adaptation to extreme conditions. This species showed a greater growth capacity when seeds from a contaminated area were sown in uncontaminated soils. Thus, L. pedunculata, mainly grown from seeds from contaminated areas, may be used in phytostabilization programmes in areas with soils with high contents of metal(loid)s.

7.
Environ Geochem Health ; 42(8): 2305-2319, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31473873

RESUMO

Arsenic is a trace element found in the environment which can be particularly toxic to living organisms. However, some plant species such as those of the genus Cistus are able to grow in soils with high As concentrations and could be used in the sustainable rehabilitation of mining areas through phytostabilization. In this work, the growth and the physiological response of Cistus salviifolius L. to As-induced oxidative stress at several concentrations (reaching 30 mg L-1) in an hydroponic system were evaluated for 30 days. Several growth parameters, chlorophyll content, chemical composition, one indicator of oxidative stress (H2O2) and two of the major antioxidative metabolites (ascorbate and glutathione) were analysed. The toxic effect of As was better perceived in the plants submitted to treatments with concentrations of 20 and 30 mg As L-1. Plants subjected to these treatments had higher concentration of As in roots and shoots. The concentrations of Ca, Mg, K and Fe in the plants as well as a large part of the evaluated growth parameters were also affected. Arsenic did not interfere with the ability of the plant to perform photosynthesis, as there were no significant differences in the contents of chlorophyll a, b and total between the different treatments. Plants from all treatments accumulated higher amount of As in roots than in shoots, and it was also in the roots that the concentrations of H2O2, AsA and GSH were higher. Cistus salviifolius showed high tolerance to As up to the concentration of 5 mg L-1, which makes it a species with high potential to be used in the phytostabilization of soils contaminated with As and presenting high concentrations of the element in the soil solution.


Assuntos
Arsênio/toxicidade , Cistus/efeitos dos fármacos , Cistus/fisiologia , Poluentes Ambientais/toxicidade , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Biodegradação Ambiental , Clorofila/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Hidroponia , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
8.
Ecotoxicol Environ Saf ; 171: 389-397, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30634090

RESUMO

Cistus monspeliensis L. is a species that grows spontaneously in contaminated mining areas of the Iberian Pyrite Belt. This species can accumulate high concentrations of As in the shoots without visible signs of phytotoxicity. In order to understand the physiological mechanisms underlying this tolerance, C. monspeliensis was grown in an Arenosol irrigated with aqueous nutrient solutions containing increasing concentrations of As (0, 1500, 5000, 10000, 15000 µM) and the effects of this metalloid on plant development and on the defence mechanisms against oxidative stress were monitored. Independently of the treatment, As was mainly retained in the roots. The plants with the highest concentrations of As in the shoots (> 5000 µM) showed toxicity symptoms such as chlorosis, low leaf size and decrease in biomass production and also nutritional deficiencies. Most of the studied physiological parameters (pigments, glutathione, ascorbate and antioxidative enzymes) showed significant correlation with As concentration in roots and shoots. Pigments, especially anthocyanins, were negatively affected even in the treatments with the lowest As concentrations. Glutathione increased significantly in roots at low As levels while in shoots this increase occurred in all As treatments. Ascorbate decreased in both tissues with As addition. The highest concentrations of As in shoots of C. monspeliensis triggered defence mechanisms against oxidative stress, namely by inducing the expression of genes coding antioxidative enzymes.


Assuntos
Arsênio/análise , Ácido Ascórbico/química , Cistus/química , Glutationa/química , Antocianinas/análise , Cistus/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Limite de Detecção , Mineração , Estresse Oxidativo/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/química , Raízes de Plantas/química
9.
Physiol Plant ; 165(2): 330-342, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30357847

RESUMO

In Mediterranean climate areas, the available scenarios for climate change suggest an increase in the frequency of heat waves and severe drought in summer. Grapevine (Vitis vinifera L.) is a traditional Mediterranean species and is the most valuable fruit crop in the world. Currently, viticulture must adjust to impending climate changes that are already pushing vine-growers toward the use of irrigation, with the concomitant losses in wine quality, and researchers to study tolerance to stress in existing genotypes. The viticulture and winemaking worlds are in demand to understand the physiological potential of the available genotypes to respond to climate changes. In this review, we will focus on the cross-talk between common abiotic stresses that currently affect grapevine productivity and that are prone to affect it deeper in the future. We will discuss results obtained under three experimental stress conditions and that call for specific responses: (1) acclimatization of in vitro plantlets, (2) stress combinations in controlled conditions for research purposes, (3) extreme events in the field that, driven by climate changes, are pushing Mediterranean species to the limit. The different levels of tolerance to stress put in evidence by the plasticity of phenotypic and genotypic response mechanisms, will be addressed. This information is relevant to understand varietal adaptation to impending climate changes and to assist vine growers in choosing genotypes and viticulture practices.


Assuntos
Adaptação Fisiológica , Mudança Climática , Estresse Fisiológico/fisiologia , Vitis/fisiologia , Adaptação Fisiológica/genética , Genótipo , Estresse Fisiológico/genética , Transcriptoma/genética , Vitis/genética
10.
Environ Sci Pollut Res Int ; 25(7): 6443-6455, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29249032

RESUMO

The Iberian Pyrite Belt (IPB; SW of the Iberian Peninsula) is one of the most important volcanogenic massive sulphide ore deposits in the world. Cistus monspeliensis L. is a native woody shrub that grows spontaneously in non-contaminated soils as well as in soils with multielemental contamination from the IPB. In this study, different ecophysiological parameters of C. monspeliensis growing in soils with different levels of metal(loid)s were evaluated to assess the potential of this species for revegetation of degraded areas. Composite samples of plants and rhizosphere soils were sampled in São Domingos and Lousal mines and in a reference area without soil contamination (Pomarão, Portugal) (Portuguese sector of IPB). Classical characterisation of the soils and quantification of their total and available metal(loid) concentrations were done. Multielemental concentration was determined in plants (shoots and roots). Ecophysiological parameters were also determined in shoots: concentrations of pigments (chlorophylls, anthocyanins and carotenoids), antioxidants (glutathione and ascorbate) and hydrogen peroxide as well as activities of several antioxidative enzymes. Although mining soils present high total concentrations of potentially hazardous elements, their available fractions were low and similar among studied areas. Soil pH as well as concentrations of extractable P, total concentrations of As, Cd and Ni and concentrations of Cu, Cr, Ni, Pb and Sb in the soil available fraction differentiate the studied areas. Only concentrations of Cd, Pb and Sb in roots and shoots were explained by the concentrations of the same elements in the soil available fraction. Although the majority of elements were translocated from roots to shoots, the shoots concentrations were below the toxic values for domestic animals and only As, Mn and Zn reached phytotoxic concentrations. Ecophysiological parameters were similar independently of the studied area. Due to its adaptability, tolerance and standard plant features, C. monspeliensis is a good choice for rehabilitation of soils with multielemental contamination under similar climatic characteristics.


Assuntos
Cistus/crescimento & desenvolvimento , Metais Pesados/análise , Mineração , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Região do Mediterrâneo , Portugal , Rizosfera
11.
Front Plant Sci ; 8: 1835, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118776

RESUMO

Widespread agricultural losses attributed to drought, often combined with high temperatures, frequently occur in the field, namely in Mediterranean climate areas, where the existing scenarios for climate change indicate an increase in the frequency of heat waves and severe drought events in summer. Grapevine (Vitis vinifera L.) is the most cultivated fruit species in the world and the most valuable one and is a traditional Mediterranean species. Currently, viticulture must adjust to impending climate changes that are already pushing vine-growers toward the use of ancient and resilient varieties. Portugal is very rich in grapevine biodiversity, however, currently, 90% of the total producing area is planted with only 16 varieties. There is a pressing need to understand the existing genetic diversity and the physiological potential of the varieties/genotypes available to be able to respond to climate changes. With the above scenario in mind, an assembly of 65 differentially expresses genes (DEGs) previously identified as responsive to abiotic stresses in two well studied genotypes, 'Touriga Nacional' and 'Trincadeira,' was designed to scan the gene expression of leaf samples from 10 traditional Portuguese varieties growing in two regions with distinct environmental conditions. Forty-five of those DEGs proved to be associated to "abiotic stress" and were chosen to build a custom qPCR array to identify uncharacterized genotypes as sensitive or tolerant to abiotic stress. According to the experimental set-up behind the array design these DEGs can also be used as indicators of the main abiotic stress that the plant is subjected and responding to (drought, heat, or excess light).

12.
Chem Asian J ; 11(24): 3468-3481, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-27723949

RESUMO

Chitin and chitosan are attractive biopolymers with enormous structural possibilities for chemical modification, creating platforms for new chemical entities with a broad scope of applications, ranging from material science to medicine. During the last few years, incredible efforts have been dedicated to the regioselective modification of these biopolymers paving the way for improved properties and tailored activities. Herein, the most recent advances in chitin/chitosan regioselective modification, reaction conditions, selectivity, and the impact on its applications are highlighted. Moreover, the recent focus on chitooligosaccharides, their regioselective and chemoselective functionalization, as well as their role in biological studies, including molecular recognition with several biological targets are also covered.


Assuntos
Quitina/química , Quitosana/química , Oligossacarídeos/química , Acilação , Alquilação , Biopolímeros/química , Quitina/análogos & derivados , Quitina/síntese química , Oligossacarídeos/síntese química , Estereoisomerismo
13.
Ecotoxicol Environ Saf ; 129: 219-27, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27054705

RESUMO

Cistus monspeliensis L. is a species that grows spontaneously in contaminated mining areas from the Iberian Pyrite Belt. This species can have high concentrations of Zn in the shoots without visible signs of phytotoxicity. In order to understand the physiological mechanisms underlying this tolerance, C. monspeliensis was grown at several concentrations of Zn(2+) (0, 500, 1000, 1500, 2000µM) and the effects of this metal on plant development and on the defence mechanisms against oxidative stress were evaluated. Independently of the treatment, Zn was mainly retained in the roots. The plants with the highest concentrations of Zn showed toxicity symptoms such as chlorosis, low leaf size and decrease in biomass production. At 2000µM of Zn, the dry biomass of the shoots decreased significantly. High concentrations of Zn in shoots did not induce deficiencies of other nutrients, except Cu. Plants with high concentrations of Zn had low amounts of chlorophyll, anthocyanins and glutathione and high contents of H2O2. The highest concentrations of Zn in shoots of C. monspeliensis triggered defence mechanisms against oxidative stress, namely by triggering antioxidative enzyme activity and by direct reactive oxygen species (ROS) scavenging through carotenoids, that are unaffected by stress due to stabilisation by ascorbic acid.


Assuntos
Cistus/efeitos dos fármacos , Cistus/crescimento & desenvolvimento , Poluentes do Solo/análise , Solo/química , Zinco/análise , Antocianinas/análise , Ácido Ascórbico/análise , Carotenoides/análise , Clorofila/análise , Glutationa/análise , Peróxido de Hidrogênio/análise , Estresse Oxidativo/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Zinco/toxicidade
14.
Plant Cell Environ ; 38(4): 777-89, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25211707

RESUMO

Heat stress is a major limiting factor of grapevine production and quality. Acclimation and recovery are essential to ensure plant survival, and the recovery mechanisms can be independent of the heat response mechanisms. An experimental set up with and without acclimation to heat followed by recovery [stepwise acclimation and recovery (SAR) and stepwise recovery (SR), respectively] was applied to two grapevine varieties, Touriga Nacional (TN), and Trincadeira (TR), with different tolerance to abiotic stress. Major differences were found between leaves of SAR and SR, especially after recovery; in SAR, almost all parameters returned to basal levels while in SR they remained altered. Acclimation led to a swifter and short-term antioxidative response, affecting the plant to a lesser extent than SR. Significant differences were found among varieties: upon stress, TN significantly increased ascorbate and glutathione reduction levels, boosting the cell's redox-buffering capacity, while TR needed to synthesize both metabolites, its response being insufficient to keep the redox state at working levels. TR was affected by stress for a longer period and the up-regulation pattern of antioxidative stress genes was more obvious. In TN, heat shock proteins were significantly induced, but the canonical heat-stress gene signature was not evident probably because no shutdown of the housekeeping metabolism was needed.


Assuntos
Aclimatação/fisiologia , Vitis/fisiologia , Atropina , Clorofila/metabolismo , Diazepam , Combinação de Medicamentos , Emodina/análogos & derivados , Temperatura Alta , Peróxido de Hidrogênio/metabolismo , Fenilpropanolamina , Folhas de Planta/fisiologia , Tri-Iodotironina , Regulação para Cima , Vitis/genética
15.
Chem Asian J ; 7(11): 2482-501, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22753270

RESUMO

Oligosaccharides and glycoconjugates play an important role in biological processes. The use of these complex polymers as biocompatible materials for medicinal applications as well as therapeutic agents for the treatment of several diseases has attracted considerable interest. However, these investigations require large and pure amounts of glycostructures. Glucosamine is one of the major building blocks of these highly important glycoconjugates. Recently, considerable synthetic efforts have been devoted to improving stereoselective glycosylation. In this Focus review, the role of the amine protecting group in the outcome of the glucosamine glycosylation reaction is highlighted.


Assuntos
Glucosamina/química , Azidas/química , Materiais Biocompatíveis/química , Glicosilação , Oxazolidinonas/química , Polímeros/química , Estereoisomerismo
16.
Eur J Med Chem ; 54: 823-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22796043

RESUMO

The close structural similarity between the two cyclooxygenase (COXs) isoforms and the absence of selective inhibitors without side effects continues to stimulate the development of novel approaches towards selective anti-inflammatory drugs. In the present study a small library of new indolic compounds involving two different substitutions patterns at the indole scaffold was synthesized. In order to establish a relation between the spatial distribution of known functional groups related with inhibitory activity, two substitution patterns were explored: one with substituents at N-1, C-3, C-5 positions and another at C-2, C-3 and C5 positions. Accordingly, indole positions C-5, C-3 and N-1 were substituted with: sulfonamide or methylsulfone at C-5, p-halo-benzyl group at C-3, and an alkyl chain with a trifluoromethyl group at N-1. Alternatively, a p-halo-benzyl group was introduced at C-2, leaving the indolic nitrogen free. Inhibitory studies were performed and the activity results obtained against both COXs isoforms were rationalized based on docking and NMR studies. Docking studies show that dialkyation at C-2 and C-3 favors a binding with an orientation similar to that of the known selective inhibitor SC-558. From the tested compounds, this substitution pattern is correlated with the highest inhibitory activity and selectivity: 70% COX-2 inhibition at 50 µM, and low COX-1 inhibition (18 ± 9%). Additionally, Saturation Transfer Difference NMR experiments reveal different interaction patterns with both COXs isoforms that may be related with different orientations of the sulfonamide group in the binding pocket. Despite the moderated inhibitory activities found, this study represents an innovative approach towards COXs inhibitory activity rationalization and to the design of anti-inflammatory drugs.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/farmacologia , Indóis/síntese química , Indóis/farmacologia , Simulação de Acoplamento Molecular , Animais , Técnicas de Química Sintética , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Indóis/química , Indóis/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Proteica
17.
Chemistry ; 17(45): 12544-55, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21989969

RESUMO

1,2-Disubstituted benzimidazoles play an important role in several areas and particularly as drug discovery targets. Herein, several methods to assemble these structures are reviewed, from the classical approaches to the more recently developed metal-catalyzed intramolecular amination process, the cascade arylamination/condensation reaction and polymer-supported benzimidazole assembly under microwave conditions.


Assuntos
Benzimidazóis/síntese química , Micro-Ondas , Aminação , Benzimidazóis/química , Benzimidazóis/farmacologia , Catálise , Descoberta de Drogas , Estrutura Molecular
18.
Mol Plant ; 4(6): 1038-51, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21498622

RESUMO

Understanding abiotic stress responses is one of the most important issues in plant research nowadays. Abiotic stress, including excess light, can promote the onset of oxidative stress through the accumulation of reactive oxygen species. Oxidative stress also arises when in vitro propagated plants are exposed to high light upon transfer to ex vitro. To determine whether the underlying pathways activated at the transfer of in vitro grapevine to ex vitro conditions reflect the processes occurring upon light stress, we used Vitis vinifera Affymetrix GeneChip (VvGA) and a custom array of genes responsive to light stress (LSCA) detected by real-time reverse transcriptase PCR (qRT-PCR). When gene-expression profiles were compared, 'protein metabolism and modification', 'signaling', and 'anti-oxidative' genes were more represented in LSCA, while, in VvGA, 'cell wall metabolism' and 'secondary metabolism' were the categories in which gene expression varied more significantly. The above functional categories confirm previous studies involving other types of abiotic stresses, enhancing the common attributes of abiotic stress defense pathways. The LSCA analysis of our experimental system detected strong response of heat shock genes, particularly the protein rescuing mechanism involving the cooperation of two ATP-dependent chaperone systems, Hsp100 and Hsp70, which showed an unusually late response during the recovery period, of extreme relevance to remove non-functional, potentially harmful polypeptides arising from misfolding, denaturation, or aggregation brought about by stress. The success of LSCA also proves the feasibility of a custom-made qRT-PCR approach, particularly for species for which no GeneChip is available and for researchers dealing with a specific and focused problem.


Assuntos
Perfilação da Expressão Gênica/métodos , Luz , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Vitis/genética , Vitis/efeitos da radiação , Estudos de Viabilidade , Genes de Plantas/genética , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos da radiação , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Vitis/citologia , Vitis/fisiologia
19.
Bioorg Med Chem Lett ; 20(22): 6475-8, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20932760

RESUMO

The reaction mechanisms of hypochlorous acid (HOCl) with several tryptophan and tryptamine derivatives, previously reported to scavenge this powerful oxidant, was investigated to determine whether ionic or radical pathways were involved. For this purpose, the reaction of tryptamine and tryptophan derivatives with HOCl was optimized and some compounds were isolated by HPLC and their structures assigned. In order to prevent possible radical reaction pathway, experiments have been carried in the presence of the radical trap TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl). The obtained results show that the reaction mechanisms are influenced by the type of structure and that a complex pathway is involved, in which both ionic and radical mechanisms can occur.


Assuntos
Ácido Hipocloroso/química , Triptaminas/química , Triptofano/química , Cromatografia Líquida de Alta Pressão , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância Magnética
20.
Eur J Med Chem ; 45(11): 4869-78, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20727623

RESUMO

The present study envisaged the development of novel antioxidant candidates using the indole scaffold. Several tryptophan and tryptamine derivatives were synthesized, in particular prenylated indole compounds, and their scavenging activity for reactive oxygen species (ROS) and reactive nitrogen species (RNS) was investigated. The library substitution pattern included several alkyl chains at positions N-1, C-2 of the indole nucleus, including prenyl and isopentyl chain, as well as different groups at the side chain (C-3) that allowed the investigation of a possible radical stabilization. The results obtained showed that tryptophan (8), tryptamine (9), N-phthaloyl tryptamine (5) and N-prenyl tryptophan (13) were the most active against peroxyl radical (ROO(•)) with activities higher than Trolox, which was used as control. The scavenging of hypochlorous acid (HOCl) was also evaluated and tryptophan (8) and tryptamine (9) showed IC(50) of 3.50 ± 0.4 and 6.00 ± 0.60 µM, respectively. Significant activity was also found for the N-prenyl tryptophan (13) with an IC(50) of 4.13 ± 0.17 µM and C-2 prenylated derivative (14), with 4.56 ± 0.48 µM. The studies were extended to RNS and best results were obtained against peroxynitrite anion (ONOO(-)) in the presence of NaHCO(3). N-alkylated tryptophan (18) showed a high activity with an IC(50) of 14.0 ± 6.8 µM. The results show that the tested compounds are effective scavengers of ROS and RNS, and suggest that the radical stabilization is strongly dependent on the type of substituents on the indolic moiety and on their relative positions. In addition, the radical dissipation inside the indolic system is mandatory for the observed antioxidant activity.


Assuntos
Antioxidantes/farmacologia , Indóis/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Indóis/síntese química , Indóis/química , Espectroscopia de Ressonância Magnética , Espécies Reativas de Oxigênio/química , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...