Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5358, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438457

RESUMO

In this paper, the authors, for the first time, have shown the use of 2D conformal microwave absorbing material (MAM) in the design and fabrication of a portable Anechoic chamber (AC). The MAM is fabricated on the transparent and conductive metal oxide layer named indium-tin-oxide (ITO) with Polyethylene terephthalate as the substrate and the ground plane for zero transmission having overall thickness of 0.012 λ where λ is calculated at 0.7 GHz. The MAM is characterized for 0.7 to 18 GHz for both TE- and TM-polarisation and oblique incidence. High sheet resistance, dipole-like resonance structure patterned on the ITO, and the air-spacing between the layers is optimized to achieve broadband absorption. The MAM is used to line the six sides of the rectangular anechoic chamber having inner dimensions of: (L × W × H: 850 × 650 × 720 mm3). The return loss (RL), gain, and radiation pattern of three antenna working at 1.56, 2.43, and 4.93 GHz are analyzed inside the AC. The measurement results for all frequencies very well match with the simulation studies, thus validating and opening the door for the future use of ultra-thin and planar MAM in the AC.

2.
Sensors (Basel) ; 23(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905072

RESUMO

Smart, and ultra-low energy consuming Internet of Things (IoTs), wireless sensor networks (WSN), and autonomous devices are being deployed to smart buildings and cities, which require continuous power supply, whereas battery usage has accompanying environmental problems, coupled with additional maintenance cost. We present Home Chimney Pinwheels (HCP) as the Smart Turbine Energy Harvester (STEH) for wind; and Cloud-based remote monitoring of its output data. The HCP commonly serves as an external cap to home chimney exhaust outlets; they have very low inertia to wind; and are available on the rooftops of some buildings. Here, an electromagnetic converter adapted from a brushless DC motor was mechanically fastened to the circular base of an 18-blade HCP. In simulated wind, and rooftop experiments, an output voltage of 0.3 V to 16 V was realised for a wind speed between 0.6 to 16 km/h. This is sufficient to operate low-power IoT devices deployed around a smart city. The harvester was connected to a power management unit and its output data was remotely monitored via the IoT analytic Cloud platform "ThingSpeak" by means of LoRa transceivers, serving as sensors; while also obtaining supply from the harvester. The HCP can be a battery-less "stand-alone" low-cost STEH, with no grid connection, and can be installed as attachments to IoT or wireless sensors nodes in smart buildings and cities.

3.
Sci Rep ; 12(1): 20894, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463379

RESUMO

The highest beam efficiency in a wireless power transfer (WPT) system that uses focusing components was 51%, using a [Formula: see text] diameter reflector for a transfer distance of [Formula: see text]. We have beaten that record, and present here a system that surpasses it by 25%. Using the quasioptical framework for reducing spillover losses in WPT, we present a double-reflector system that achieved a higher beam efficiency than the state-of-the-art. The transmitting and receiving antennas were 3D-printed conical smooth-walled horn antennas, specially designed for this purpose. The theoretical analysis enabled the design of a [Formula: see text] system, whose energy focus location has been experimentally verified. Then, the complete system was experimented upon, enabling a high beam transfer efficiency of 63.75%. Additionally, the advantage of using quasioptics in radiative wireless power transfer applications is discussed, as well as the sensitivity of its systems. Finally, a comparison with the state-of-the-art is done by the proposal of new figures-of-merit, relating the systems' physical dimensions and beam efficiency. This research is a paradigm shift by presenting a promising path for future WPT research through quasioptics, whose high efficiencies may enable commercial applications of this technology for solving power supply issues in our society.

4.
Sci Rep ; 12(1): 12886, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902719

RESUMO

In this paper, we present the results of a 6-year experiment in space that studied the effects of radiation in Gallium Nitride (GaN) electronics in geostationary orbit. Four GaN transistors in a Colpitts oscillator configuration were flown in the Component Technology Test-Bed aboard the Alphasat telecommunication satellite. A heuristic analysis was performed by observing the variation in the power output of the oscillators with the total ionizing dose gathered during the mission. The total ionizing dose was measured with a Radiation Sensing Field Effect Transistors (RadFET) placed close to the GaN devices. The experiment showed that GaN is a robust technology that can be used in the space radiation environment of a geostationary orbit. The work presented here starts with a brief introduction of the subject, the motivation, and the main goal. This is followed by the description of the experimental setup, including the details of the oscillator design and simulations, as well as the implementation of the test-bed and the Components Technology Test-Bed. Finally, the results obtained during the 6 years of experience in space are discussed.

5.
Sensors (Basel) ; 21(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210035

RESUMO

The main goal of this paper is to present a three-dimensional (3D) antenna array to improve the performance of wireless power transmission (WPT) systems, as well as its characterization with over-the-air (OTA) multi-sine techniques. The 3D antenna consists of 15 antenna elements attached to an alternative 3D structure, allowing energy to be transmitted to all azimuth directions at different elevation angles without moving. The OTA multi-sine characterization technique was first utilized to identify issues in antenna arrays. However, in this work, the technique is used to identify which elements of the 3D antenna should operate to transmit the energy in a specific direction. Besides, the 3D antenna design description and its characterization are performed to authenticate its operation. Since 3D antennas are an advantage in WPT applications, the antenna is evaluated in a real WPT scenario to power an RF-DC converter, and experimental results are presented.


Assuntos
Tecnologia sem Fio
6.
Sensors (Basel) ; 20(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182749

RESUMO

Internet of Things (IoT) has been developing to become a free exchange of useful information between multiple real-world devices. Already spread all over the world in the most varied forms and applications, IoT devices need to overcome a series of challenges to respond to the new requirements and demands. The main focus of this manuscript is to establish good practices for the design of IoT devices (i.e., smart devices) with a focus on two main design challenges: power and connectivity. It groups IoT devices in passive, semi-passive, and active, giving details on multiple research topics. Backscatter communication, Wireless Power Transfer (WPT), Energy Harvesting (EH), chipless devices, Simultaneous Wireless Information and Power Transfer (SWIPT), and Wake-Up Radio (WUR) are some examples of the technologies that will be explored in this work.

7.
Sensors (Basel) ; 17(10)2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28972554

RESUMO

In this work, three different concepts are used to develop a fully passive sensor that is capable of measuring different types of data. The sensor was supplied by Wireless Power Transmission (WPT). Communication between the sensor and reader is established by a backscatter, and to ensure minimum energy consumption, low power techniques are used. In a simplistic way, the process starts by the transmission of two different waves by the reader to the sensor, one of which is used in power transmission and the other of which is used to communicate. Once the sensor is powered, the monitoring process starts. From the monitoring state, results from after processing are used to modulate the incoming wave, which is the information that is sent back from the reader to the tag. This new combination of technologies enables the possibility of using sensors without any cables or batteries to operate 340 cm from the reader. The developed prototype measures acceleration and temperature. However, it is scalable. This system enables a new generation of passive Internet of Things (IoT) devices.

8.
Opt Express ; 21(3): 3354-62, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481795

RESUMO

In this paper, we propose a wideband dynamic behavioral model for a bulk reflective semiconductor optical amplifier (RSOA) used as a modulator in colorless radio over fiber (RoF) systems using a tapped-delay multilayer perceptron (TDMLP). 64 quadrature amplitude modulation (QAM) signals with 20 Msymbol/s were used to train, validate and test the model. Nonlinear distortion and dynamic effects induced by the RSOA modulator are demonstrated. The parameters of the model such as the number of nodes in the hidden layer and memory depth were optimized to ensure the generality and accuracy. The normalized mean square error (NMSE) is used as a figure of merit. The NMSE was up to -44.33 dB when the number of nodes in the hidden layer and memory depth were set to 20 and 3, respectively. The TDMLP model can accurately approximate to the dynamic characteristics of the RSOA modulator. The dynamic AM-AM and dynamic AM-PM distortions of the RSOA modulator are drawn. The results show that the single hidden layer TDMLP can provide accurate approximation for behaviors of the RSOA modulator.


Assuntos
Amplificadores Eletrônicos , Desenho Assistido por Computador , Modelos Teóricos , Redes Neurais de Computação , Dispositivos Ópticos , Semicondutores , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
9.
Opt Express ; 19(18): 17641-6, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21935131

RESUMO

Reflective semiconductor optical amplifiers (RSOAs) can be used as external modulators in radio over fiber (RoF) links due to their amplification and modulation characteristics and colorless property. The nonlinear distortion of RSOA, however, limits its dynamic range. In this paper we demonstrate digital predistortion (DPD) linearization techniques to improve the linearity of RSOA external modulators. 64 quadrature amplitude modulation (QAM) signals are utilized to extract the model parameters. The dynamic AM/AM and AM/PM characteristics and power spectral densities of the modulated signals from the RSOA are demonstrated without and with DPD. Experimental results show clearly that the nonlinear distortion of RSOA external modulators in RoF links can be compensated using DPD linearization techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA