Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 10: 1011, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798621

RESUMO

Although habitat loss has large, consistently negative effects on biodiversity, its genetic consequences are not yet fully understood. This is because measuring the genetic consequences of habitat loss requires accounting for major methodological limitations like the confounding effect of habitat fragmentation, historical processes underpinning genetic differentiation, time-lags between the onset of disturbances and genetic outcomes, and the need for large numbers of samples, genetic markers, and replicated landscapes to ensure sufficient statistical power. In this paper we overcame all these challenges to assess the genetic consequences of extreme habitat loss driven by mining in two herbs endemic to Amazonian savannas. Relying on genotyping-by-sequencing of hundreds of individuals collected across two mining landscapes, we identified thousands of neutral and independent single-nucleotide polymorphisms (SNPs) in each species and used these to evaluate population structure, genetic diversity, and gene flow. Since open-pit mining in our study region rarely involves habitat fragmentation, we were able to assess the independent effect of habitat loss. We also accounted for the underlying population structure when assessing landscape effects on genetic diversity and gene flow, examined the sensitivity of our analyses to the resolution of spatial data, and used annual species and cross-year analyses to minimize and quantify possible time-lag effects. We found that both species are remarkably resilient, as genetic diversity and gene flow patterns were unaffected by habitat loss. Whereas historical habitat amount was found to influence inbreeding; heterozygosity and inbreeding were not affected by habitat loss in either species, and gene flow was mainly influenced by geographic distance, pre-mining land cover, and local climate. Our study demonstrates that it is not possible to generalize about the genetic consequences of habitat loss, and implies that future conservation efforts need to consider species-specific genetic information.

2.
PLoS One ; 13(8): e0201417, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30089144

RESUMO

Isoetes are ancient quillworts members of the only genus of the order Isoetales. The genus is slow evolving but is resilient, and widespread worldwide. Two recently described species occur in the Eastern Brazilian Amazon, Isoetes serracarajensis and Isoetes cangae. They are found in the ironstone grasslands known as Canga. While I. serracarajensis is present mostly in seasonal water bodies, I. cangae is known to occur in a single permanent lake at the South mountain range. In this work, we undertake an extensive morphological, physiological and genetic characterization of both species to establish species boundaries and better understand the morphological and genetic features of these two species. Our results indicate that the morphological differentiation of the species is subtle and requires a quantitative assessment of morphological elements of the megaspore for diagnosis. We did not detect differences in microspore output, but morphological peculiarities may establish a reproductive barrier. Additionally, genetic analysis using DNA barcodes and whole chloroplast genomes indicate that although the plants are genetically very similar both approaches provide diagnostic characters. There was no indication of population structuring I. serracarajensis. These results set the basis for a deeper understanding of the evolution of the Isoetes genus.


Assuntos
Código de Barras de DNA Taxonômico , Genoma de Cloroplastos , Lycopodiaceae , Lycopodiaceae/classificação , Lycopodiaceae/genética , Lycopodiaceae/crescimento & desenvolvimento , América do Sul
3.
Front Plant Sci ; 9: 532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868042

RESUMO

Although genetic diversity ultimately determines the ability of organisms to adapt to environmental changes, conservation assessments like the widely used International Union for Conservation of Nature (IUCN) Red List Criteria do not explicitly consider genetic information. Including a genetic dimension into the IUCN Red List Criteria would greatly enhance conservation efforts, because the demographic parameters traditionally considered are poor predictors of the evolutionary resilience of natural populations to global change. Here we perform the first genomic assessment of genetic diversity, gene flow, and patterns of local adaptation in tropical plant species belonging to different IUCN Red List Categories. Employing RAD-sequencing we identified tens of thousands of single-nucleotide polymorphisms in an endangered narrow-endemic and a least concern widespread morning glory (Convolvulaceae) from Amazonian savannas, a highly threatened and under-protected tropical ecosystem. Our results reveal greater genetic diversity and less spatial genetic structure in the endangered species. Whereas terrain roughness affected gene flow in both species, forested and mining areas were found to hinder gene flow in the endangered plant. Finally we implemented environmental association tests and genome scans for selection, and identified a higher proportion of candidate adaptive loci in the widespread species. These mainly contained genes related to pathogen resistance and physiological adaptations to life in nutrient-limited environments. Our study emphasizes that IUCN Red List Criteria do not always prioritize species with low genetic diversity or whose genetic variation is being affected by habitat loss and fragmentation, and calls for the inclusion of genetic information into conservation assessments. More generally, our study exemplifies how landscape genomic tools can be employed to assess the status, threats and adaptive responses of imperiled biodiversity.

4.
Sci Rep ; 7(1): 7493, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790327

RESUMO

Amazon comprises a vast variety of ecosystems, including savannah-like Canga barrens that evolved on iron-lateritic rock plateaus of the Carajás Mountain range. Individual Cangas are enclosed by the rain forest, indicating insular isolation that enables speciation and plant community differentiation. To establish a framework for the research on natural history and conservation management of endemic Canga species, seven chloroplast DNA loci and an ITS2 nuclear DNA locus were used to study natural molecular variation of the red flowered Ipomoea cavalcantei and the lilac flowered I. marabaensis. Partitioning of the nuclear and chloroplast gene alleles strongly suggested that the species share the most recent common ancestor, pointing a new independent event of the red flower origin in the genus. Chloroplast gene allele analysis showed strong genetic differentiation between Canga populations, implying a limited role of seed dispersal in exchange of individuals between Cangas. Closed haplotype network topology indicated a requirement for the paternal inheritance in generation of cytoplasmic genetic variation. Tenfold higher nucleotide diversity in the nuclear ITS2 sequences distinguished I. cavalcantei from I. marabaensis, implying a different pace of evolutionary changes. Thus, Canga ecosystems offer powerful venues for the study of speciation, multitrait adaptation and the origins of genetic variation.


Assuntos
Adaptação Fisiológica/genética , DNA Intergênico/genética , Especiação Genética , Ipomoea/genética , Brasil , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Conservação dos Recursos Naturais , DNA de Cloroplastos/metabolismo , DNA de Cloroplastos/ultraestrutura , DNA Intergênico/química , DNA Intergênico/metabolismo , Variação Genética , Pradaria , Haplótipos , Ipomoea/classificação , Conformação de Ácido Nucleico , Filogenia , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Floresta Úmida
5.
Behav Brain Sci ; 35(5): 379-80, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23095401

RESUMO

We address current needs for neogenomics-based theoretical and computational approaches for several neuroscience research fields, from investigations of heritability properties, passing by investigations of spatiotemporal dynamics in the neuromodulatory microcircuits involved in perceptual learning and attentional shifts, to the application of genetic algorithms to create robots exhibiting ongoing emergence.


Assuntos
Genética Comportamental , Genômica , Feminino , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...