Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0292028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38691538

RESUMO

APRIL (A Proliferation-Inducing Ligand), a member of the TNF superfamily, was initially described for its ability to promote proliferation of tumor cells in vitro. Moreover, this cytokine has been related to the pathogenesis of different chronic inflammatory diseases, such as rheumatoid arthritis. This study aimed to evaluate the ability of APRIL in regulating B cell-mediated immune response in the antigen-induced arthritis (AIA) model in mice. AIA was induced in previously immunized APRIL-transgenic (Tg) mice and their littermates by administration of antigen (mBSA) into the knee joints. Different inflammatory cell populations in spleen and draining lymph nodes were analyzed using flow cytometry and the assay was performed in the acute and chronic phases of the disease, while cytokine levels were assessed by ELISA. In the acute AIA, APRIL-Tg mice developed a less severe condition and a smaller inflammatory infiltrate in articular tissues when compared with their littermates. We also observed that the total cellularity of draining lymph nodes was decreased in APRIL-Tg mice. Flow cytometry analysis revealed an increase of CD19+IgM+CD5+ cell population in draining lymph nodes and an increase of CD19+CD21hiCD23hi (B regulatory) cells in APRIL-Tg mice with arthritis as well as an increase of IL-10 and CXCL13 production in vitro.


Assuntos
Artrite Experimental , Linfócitos B Reguladores , Camundongos Transgênicos , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Animais , Camundongos , Artrite Experimental/imunologia , Artrite Experimental/patologia , Linfócitos B Reguladores/imunologia , Interleucina-10/metabolismo , Linfonodos/imunologia , Linfonodos/patologia , Baço/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética
2.
J Clin Med ; 12(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37109224

RESUMO

Chagas disease, the parasitic infection caused by Trypanosoma cruzi, afflicts about 6 million people in Latin America. Here, we investigated the hypothesis that T. cruzi may fuel heart parasitism by activating B1R, a G protein-coupled (brady) kinin receptor whose expression is upregulated in inflamed tissues. Studies in WT and B1R-/- mice showed that T. cruzi DNA levels (15 days post infection-dpi) were sharply reduced in the transgenic heart. FACS analysis revealed that frequencies of proinflammatory neutrophils and monocytes were diminished in B1R-/- hearts whereas CK-MB activity (60 dpi) was exclusively detected in B1R+/+ sera. Since chronic myocarditis and heart fibrosis (90 dpi) were markedly attenuated in the transgenic mice, we sought to determine whether a pharmacological blockade of the des-Arg9-bradykinin (DABK)/B1R pathway might alleviate chagasic cardiomyopathy. Using C57BL/6 mice acutely infected by a myotropic T. cruzi strain (Colombian), we found that daily treatment (15-60 dpi) with R-954 (B1R antagonist) reduced heart parasitism and blunted cardiac injury. Extending R-954 treatment to the chronic phase (120-160 dpi), we verified that B1R targeting (i) decreased mortality indexes, (ii) mitigated chronic myocarditis, and (iii) ameliorated heart conduction disturbances. Collectively, our study suggests that a pharmacological blockade of the proinflammatory KKS/DABK/B1R pathway is cardioprotective in acute and chronic Chagas disease.

3.
Pathogens ; 11(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35215131

RESUMO

Microangiopathy may worsen the clinical outcome of Chagas disease. Given the obstacles to investigating the dynamics of inflammation and angiogenesis in heart tissues parasitized by Trypanosoma cruzi, here we used intravital microscopy (IVM) to investigate microcirculatory alterations in the hamster cheek pouch (HCP) infected by green fluorescent protein-expressing T. cruzi (GFP-T. cruzi). IVM performed 3 days post-infection (3 dpi) consistently showed increased baseline levels of plasma extravasation. Illustrating the reciprocal benefits that microvascular leakage brings to the host-parasite relationship, these findings suggest that intracellular amastigotes, acting from inside out, stimulate angiogenesis while enhancing the delivery of plasma-borne nutrients and prosurvival factors to the infection foci. Using a computer-based analysis of images (3 dpi), we found that proangiogenic indexes were positively correlated with transcriptional levels of proinflammatory cytokines (pro-IL1ß and IFN-γ). Intracellular GFP-parasites were targeted by delaying for 24 h the oral administration of the trypanocidal drug benznidazole. A classification algorithm showed that benznidazole (>24 h) blunted angiogenesis (7 dpi) in the HCP. Unbiased proteomics (3 dpi) combined to pharmacological targeting of chymase with two inhibitors (chymostatin and TY-51469) linked T. cruzi-induced neovascularization (7 dpi) to the proangiogenic activity of chymase, a serine protease stored in secretory granules from mast cells.

4.
Nutrients ; 11(9)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443409

RESUMO

Oxidative stress is a common condition described in risk factors for cardiovascular disease. Betanin, a bioactive pigment from red beetroot demonstrates anti-inflammatory and antioxidant properties. The main aim of this study was to evaluate the short-term intake of betanin against oxidative stress in a rodent model, a common condition described in several risk factors for cardiovascular disease. Oxidative stress was induced in Wistar rats by a hyperlipidemic diet for 60 days, followed by betanin administration (20 mg·kg-1) through oral gavage for 20 days. Plasma biochemical parameters and antioxidant enzyme activities were evaluated. Lipid peroxidation and histopathological changes were determined in the liver. The hyperlipidemic diet caused hyperglycemia, hyperinsulinemia, insulin resistance, and increases in alanine transaminase and aspartate transaminase levels. Oxidative stress status was confirmed by reduction of antioxidant enzyme activities, increased lipid peroxidation, and liver damage. Purified betanin regulated glucose levels, insulin, and insulin resistance. Hepatic damage was reversed as evidenced by the reduction in alanine transaminase and aspartate transaminase levels and confirmed by histological analyses. Betanin reduced hepatic malondialdehyde and increased superoxide dismutase, catalase, and glutathione peroxidase activities. Short-term betanin intake modulated biochemical parameters, reversed hepatic tissue damage, and attenuated oxidative stress in Wistar rats.


Assuntos
Antioxidantes/administração & dosagem , Betacianinas/administração & dosagem , Hiperlipidemias/prevenção & controle , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Esquema de Medicação , Hiperlipidemias/sangue , Hiperlipidemias/patologia , Insulina/sangue , Resistência à Insulina , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos Wistar , Fatores de Tempo
5.
Immun Inflamm Dis ; 6(2): 207-220, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29314720

RESUMO

INTRODUCTION: A proliferation-inducing ligand (APRIL) and B cell activation factor (BAFF) are known to play a significant role in the pathogenesis of several diseases, including BAFF in malaria. The aim of this study was to investigate whether APRIL and BAFF plasma concentrations could be part of inflammatory responses associated with P. vivax and P. falciparum malaria in patients from the Brazilian Amazon. METHODS: Blood samples were obtained from P. vivax and P. falciparum malaria patients (n = 52) resident in Porto Velho before and 15 days after the beginning of treatment and from uninfected individuals (n = 12). We investigated APRIL and BAFF circulating levels and their association with parasitaemia, WBC counts, and cytokine/chemokine plasma levels. The expression levels of transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) on PBMC from a subset of 5 P. vivax-infected patients were analyzed by flow cytometry. RESULTS: APRIL plasma levels were transiently increased during acute P. vivax and P. falciparum infections whereas BAFF levels were only increased during acute P. falciparum malaria. Although P. vivax and P. falciparum malaria patients have similar cytokine profiles during infection, in P. vivax acute phase malaria, APRIL but not BAFF levels correlated positively with IL-1, IL-2, IL-4, IL-6, and IL-13 levels. We did not find any association between P. vivax parasitaemia and APRIL levels, while an inverse correlation was found between P. falciparum parasitaemia and APRIL levels. The percentage of TACI positive CD4+ and CD8+ T cells were increased in the acute phase P. vivax malaria. CONCLUSION: These findings suggest that the APRIL and BAFF inductions reflect different host strategies for controlling infection with each malaria species.


Assuntos
Fator Ativador de Células B/sangue , Malária Falciparum/sangue , Malária Vivax/sangue , Malária/sangue , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Adulto , Antimaláricos/uso terapêutico , Fator Ativador de Células B/imunologia , Brasil , Estudos de Casos e Controles , Quimioterapia Combinada/métodos , Feminino , Voluntários Saudáveis , Interações Hospedeiro-Parasita/imunologia , Humanos , Interleucinas/sangue , Interleucinas/imunologia , Contagem de Leucócitos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Masculino , Parasitemia/imunologia , Parasitemia/parasitologia , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/imunologia , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Adulto Jovem
6.
Front Immunol ; 8: 840, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824610

RESUMO

During the course of Chagas disease, infectious forms of Trypanosoma cruzi are occasionally liberated from parasitized heart cells. Studies performed with tissue culture trypomastigotes (TCTs, Dm28c strain) demonstrated that these parasites evoke neutrophil/CXCR2-dependent microvascular leakage by activating innate sentinel cells via toll-like receptor 2 (TLR2). Upon plasma extravasation, proteolytically derived kinins and C5a stimulate immunoprotective Th1 responses via cross-talk between bradykinin B2 receptors (B2Rs) and C5aR. Awareness that TCTs invade cardiovascular cells in vitro via interdependent activation of B2R and endothelin receptors [endothelin A receptor (ETAR)/endothelin B receptor (ETBR)] led us to hypothesize that T. cruzi might reciprocally benefit from the formation of infection-associated edema via activation of kallikrein-kinin system (KKS). Using intravital microscopy, here we first examined the functional interplay between mast cells (MCs) and the KKS by topically exposing the hamster cheek pouch (HCP) tissues to dextran sulfate (DXS), a potent "contact" activator of the KKS. Surprisingly, although DXS was inert for at least 30 min, a subtle MC-driven leakage resulted in factor XII (FXII)-dependent activation of the KKS, which then amplified inflammation via generation of bradykinin (BK). Guided by this mechanistic insight, we next exposed TCTs to "leaky" HCP-forged by low dose histamine application-and found that the proinflammatory phenotype of TCTs was boosted by BK generated via the MC/KKS pathway. Measurements of footpad edema in MC-deficient mice linked TCT-evoked inflammation to MC degranulation (upstream) and FXII-mediated generation of BK (downstream). We then inoculated TCTs intracardiacally in mice and found a striking decrease of parasite DNA (quantitative polymerase chain reaction; 3 d.p.i.) in the heart of MC-deficient mutant mice. Moreover, the intracardiac parasite load was significantly reduced in WT mice pretreated with (i) cromoglycate (MC stabilizer) (ii) infestin-4, a specific inhibitor of FXIIa (iii) HOE-140 (specific antagonist of B2R), and (iv) bosentan, a non-selective antagonist of ETAR/ETBR. Notably, histopathology of heart tissues from mice pretreated with these G protein-coupled receptors blockers revealed that myocarditis and heart fibrosis (30 d.p.i.) was markedly and redundantly attenuated. Collectively, our study suggests that inflammatory edema propagated via activation of the MC/KKS pathway fuels intracardiac parasitism by generating infection-stimulatory peptides (BK and endothelins) in the edematous heart tissues.

7.
PLoS One ; 10(10): e0140150, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26469782

RESUMO

Diabetes mellitus is a chronic disease that affects over 382 million people worldwide. Type-1 Diabetes (T1D) is classified as an autoimmune disease that results from pancreatic ß-cell destruction and insulin deficiency. Type-2 Diabetes (T2D) is characterized principally by insulin resistance in target tissues followed by decreased insulin production due to ß-cell failure. It is challenging to identify immunological markers such as inflammatory molecules that are triggered in response to changes during the pathogenesis of diabetes. APRIL is an important member of the TNF family and has been linked to chronic inflammatory processes of various diseases since its discovery in 1998. Therefore, this study aimed to evaluate APRIL serum levels in T1D and T2D. For this, we used the ELISA assay to measure serum APRIL levels of 33 T1D and 30 T2D patients, and non-diabetic subjects as control group. Our data showed a decrease in serum APRIL levels in T1D patients when compared with healthy individuals. The same pattern was observed in the group of T2D patients when compared with the control. The decrease of serum APRIL levels in diabetic patients suggests that this cytokine has a role in T1D and T2D. Diabetes is already considered as an inflammatory condition with different cytokines being implicated in its physiopathology. Our data suggest that APRIL can be considered as a potential modulating cytokine in the inflammatory process of diabetes.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 2/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Criança , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 2/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
PLoS Negl Trop Dis ; 9(6): e0003849, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26090667

RESUMO

Oral transmission of Chagas disease has been documented in Latin American countries. Nevertheless, significant studies on the pathophysiology of this form of infection are largely lacking. The few studies investigating oral route infection disregard that inoculation in the oral cavity (Oral infection, OI) or by gavage (Gastrointestinal infection, GI) represent different infection routes, yet both show clear-cut parasitemia and heart parasitism during the acute infection. Herein, BALB/c mice were subjected to acute OI or GI infection using 5x10(4) culture-derived Trypanosoma cruzi trypomastigotes. OI mice displayed higher parasitemia and mortality rates than their GI counterparts. Heart histopathology showed larger areas of infiltration in the GI mice, whereas liver lesions were more severe in the OI animals, accompanied by higher Alanine Transaminase and Aspartate Transaminase serum contents. A differential cytokine pattern was also observed because OI mice presented higher pro-inflammatory cytokine (IFN-γ, TNF) serum levels than GI animals. Real-time PCR confirmed a higher TNF, IFN-γ, as well as IL-10 expression in the cardiac tissue from the OI group compared with GI. Conversely, TGF-ß and IL-17 serum levels were greater in the GI animals. Immunolabeling revealed macrophages as the main tissue source of TNF in infected mice. The high mortality rate observed in the OI mice paralleled the TNF serum rise, with its inhibition by an anti-TNF treatment. Moreover, differences in susceptibility between GI versus OI mice were more clearly related to the host response than to the effect of gastric pH on parasites, since infection in magnesium hydroxide-treated mice showed similar results. Overall, the present study provides conclusive evidence that the initial site of parasite entrance critically affects host immune response and disease outcome. In light of the occurrence of oral Chagas disease outbreaks, our results raise important implications in terms of the current view of the natural disease course and host-parasite relationship.


Assuntos
Doença de Chagas/transmissão , Citocinas/metabolismo , Trypanosoma cruzi , Animais , Doença de Chagas/imunologia , Doença de Chagas/mortalidade , Citocinas/sangue , Citocinas/genética , Regulação da Expressão Gênica/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocárdio/patologia , Parasitemia/imunologia , Parasitemia/mortalidade , Parasitemia/transmissão , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/patogenicidade
9.
Carcinogenesis ; 36(5): 574-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25750171

RESUMO

APRIL (a proliferation-inducing ligand) is a cytokine of the tumor necrosis factor family associated mainly with hematologic malignancies. APRIL is also overexpressed in breast carcinoma tissue lesions, although neither its role in breast tumorigenesis nor the underlying molecular mechanism is known. Here, we show that several breast cancer cell lines express APRIL and both its receptors, B cell maturation antigen (BCMA) and transmembrane activator and CAML-interactor (TACI), independently of luminal or basal tumor cell phenotype, and that the mitogen-activated protein kinases p38, ERK1/2, and JNK1/2 are activated in response to APRIL. The inflammatory stimulus poly I:C, a toll-like receptor (TLR) 3 ligand, enhanced APRIL secretion. Silencing experiments decreased cell proliferation, demonstrating that APRIL is a critical autocrine factor for breast tumor growth. Studies of 4T1 orthotopic breast tumors in APRIL transgenic mice showed that an APRIL-enriched environment increased tumor growth and promoted lung metastasis associated with enhanced tumor cell proliferation; BCMA and TACI expression suggests that both participate in these processes. We detected APRIL, BCMA and TACI in human luminal, triple-negative breast carcinomas and HER2 breast carcinomas, with increased levels in more aggressive basal tumors. APRIL was observed near Ki67(+) nuclei and was distributed heterogeneously in the cancer cells, in the leukocyte infiltrate, and in the myoepithelial layer adjacent to the tumor area; these results imply that APRIL provides proliferation signals to tumor cells through paracrine and autocrine signaling. Our study identifies participation of APRIL signaling in breast cancer promotion; we propose impairment of this pathway as a potential therapeutic strategy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , Neoplasias Pulmonares/secundário , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Apoptose , Antígeno de Maturação de Linfócitos B/genética , Antígeno de Maturação de Linfócitos B/metabolismo , Biomarcadores Tumorais/genética , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Proliferação de Células , Feminino , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo , Células Tumorais Cultivadas , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Thromb Res ; 134(2): 376-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24877647

RESUMO

BACKGROUND: Cardiovascular diseases are the most frequent cause of morbidity and mortality worldwide. Among the most important cardiovascular diseases are atherothrombosis and venous thromboembolism that present platelet aggregation as a key event. Currently, the commercial antiplatelet agents display several undesirable effects, which prompt the search for new compounds with better therapeutic index, more efficient body distribution and mechanism. METHODS: In this work we characterized in vivo and in vitro the antithrombotic and toxicological profiles of novel antiplatelet N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazides derivatives also comparing them with aspirin. In addition we also analyzed the stability of the more active compound after encapsulation in PLGA or PCL nanoparticles and the release profile of these new nanosystems. RESULTS: The biological results revealed not only the selective effect against arachidonic acid-induced platelet aggregation mainly for compounds 2c, 2e and 2h but also their in vivo active profile on thromboembolism pulmonary animal model with better survival rates (e.g. 82%) than aspirin (33%). The overall toxicological profile was determined by in vitro (MTT reduction tests, neutral red uptake in kidney VERO cells and hemolysis assays) and in vivo (pulmonary embolism) assays that pointed 2c as the most promising derivative with potential as a lead compound. By using the nanoprecipitation technique 2c was loaded into PLGA and PCL nanoparticles showing controlled release profile over 21days according to our drug release tests. CONCLUSION: According to our results compound 2c is the most interesting derivative for further studies as it showed the best activity and toxicological profile also allowing the nanoencapsulation process. Thus 2c may assist in determining a new potential therapy with favorable pharmacokinetics for treatment of thrombotic disorders.


Assuntos
Hidrazinas/química , Hidrazinas/uso terapêutico , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/uso terapêutico , Adulto , Animais , Coagulação Sanguínea/efeitos dos fármacos , Chlorocebus aethiops , Portadores de Fármacos/química , Hemólise/efeitos dos fármacos , Humanos , Hidrazinas/administração & dosagem , Hidrazinas/farmacologia , Ácido Láctico/química , Camundongos , Nanopartículas/química , Nanotecnologia , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/administração & dosagem , Inibidores da Agregação Plaquetária/farmacologia , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Embolia Pulmonar/tratamento farmacológico , Triazóis/administração & dosagem , Triazóis/química , Triazóis/farmacologia , Triazóis/uso terapêutico , Células Vero
11.
Ann Rheum Dis ; 72(8): 1367-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23178293

RESUMO

BACKGROUND: The tumour necrosis factor (TNF)-family members B cell activating factor (BAFF) and A PRoliferation-Inducing Ligand (APRIL) play important roles in B cell biology, and share binding to B cell maturation antigen and transmembrane activator and cyclophilin ligand interactor, both receptors of the TNF-family. However, while it is reported that BAFF can break B cell tolerance, the role of APRIL in autoimmunity remains elusive. OBJECTIVE: To evaluate the role of APRIL on collagen-induced arthritis (CIA). METHODS: CIA was induced in APRIL-transgenic (Tg) DBA/1 mice and littermates. Disease progression was evaluated by clinical and histological signs of arthritis. In another experimental setting mice were exposed to the collagen antibody-induced arthritis. In addition, we tested T cell dependent humoral responses in APRIL-Tg mice. RESULTS: We found that APRIL-Tg displayed a strongly reduced incidence and severity of CIA compared with littermates, with decreases in collagen-specific autoantibody titres, immune complex deposition and downstream mast cell activation in joints. Notably, ectopic APRIL-expression was also found to negatively regulate T cell dependent humoral responses. The lower autoantibody production in APRIL-Tg mice during CIA appears to be crucial, as arthritis induced by administration of anti-collagen antibodies developed similar in APRIL-Tg and control mice, thus demonstrating that the downstream effector pathways induced by anti-collagen antibodies remain intact in APRIL-Tg mice. This protective effect was specifically mediated by APRIL, as adenoviral delivery of APRIL decreased CIA in a therapeutic setting. CONCLUSIONS: Collectively, our data identify APRIL as a negative regulator of CIA by regulating autoantibody production. These findings are of important clinical relevance, as the therapeutic potential of transmembrane activator and cyclophilin ligand interactor-Fc (atacicept) is presently evaluated in clinical trials.


Assuntos
Artrite Experimental/genética , Regulação da Expressão Gênica , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Animais , Complexo Antígeno-Anticorpo/metabolismo , Artrite Experimental/imunologia , Artrite Experimental/patologia , Autoanticorpos , Degranulação Celular/imunologia , Progressão da Doença , Membro Posterior , Imunidade Humoral/genética , Imunidade Humoral/imunologia , Imunoglobulina G/sangue , Mastócitos/imunologia , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Joelho de Quadrúpedes/imunologia , Joelho de Quadrúpedes/metabolismo , Joelho de Quadrúpedes/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
12.
Exp Parasitol ; 133(2): 201-10, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23219949

RESUMO

Because there is no vaccine in clinical use, control of Leishmaniasis relies almost exclusively on chemotherapy and the conventional treatments exhibit high toxicity for patients and emerging drug resistance. Recently, we showed that oral treatment with synthetic pyrazole carbohydrazide compounds induced lower parasite load in draining lymph nodes and reduced skin lesion size without causing any toxic effects in an experimental murine infection model with Leishmania amazonensis. In this study, CBA mice were infected in the footpad with L. amazonensis and then orally treated with pyrazole carbohydrazides derivatives, such as BrNO(2), NO(2)Cl and NO(2)Br and their histopathological and immunological effects were then investigated. Epidermis and dermis had lower levels of inflammatory infiltration compared to the infected untreated control mice. In the dermis of treated animals, the numbers of vacuolated macrophages containing intracellular parasites were far lower than in infected untreated animals. In addition to dermal macrophages, we also observed a mixed inflammatory infiltrate containing lymphocytes and granulocyte cells. Lower numbers of B cells (B220+) and T lymphocytes (CD3+) were identified in the lesions of treated mice compared with the untreated, infected mice. In draining lymph node cells, the number of T lymphocytes (CD3+) was decreased, and the numbers of B cells (CD19+) and CD8+ T cells were increased in infected mice, when compared with the non-infected control group. In additional, we have shown that infected treated and untreated lymph node cells had similar levels of TGF-ß and IFN-γ mRNA expression, whereas IL-4 was expressed at a lower level in the treated group. Increased levels of the specific anti-Leishmania IgG2a or IgG3 antibody subclass were observed in NO(2)Cl or BrNO(2)-treated group, respectively. Overall, our experimental findings suggest that pyrazole carbohydrazides exert modulation of IL-4 expression and B cell levels; however, further evaluation is required to determine the optimal treatment regime.


Assuntos
Hidrazinas/uso terapêutico , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/tratamento farmacológico , Pirazóis/uso terapêutico , Animais , Anticorpos Antiprotozoários/sangue , Citocinas/genética , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Hidrazinas/química , Hidrazinas/farmacologia , Imunoglobulina G/sangue , Imunoglobulina G/classificação , Imuno-Histoquímica , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/patologia , Linfonodos/citologia , Linfonodos/imunologia , Linfonodos/patologia , Linfócitos/classificação , Linfócitos/citologia , Macrófagos/citologia , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos CBA , Pirazóis/química , Pirazóis/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/parasitologia , Pele/patologia
13.
J Trop Med ; 2012: 747185, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505943

RESUMO

The comprehension of the immune responses in infectious diseases is crucial for developing novel therapeutic strategies. Here, we review current findings on the dynamics of lymphocyte subpopulations following experimental acute infection by Trypanosoma cruzi, the causative agent of Chagas disease. In the thymus, although the negative selection process of the T-cell repertoire remains operational, there is a massive thymocyte depletion and abnormal release of immature CD4(+)CD8(+) cells to peripheral lymphoid organs, where they acquire an activated phenotype similar to activated effector or memory T cells. These cells apparently bypassed the negative selection process, and some of them are potentially autoimmune. In infected animals, an atrophy of mesenteric lymph nodes is also observed, in contrast with the lymphocyte expansion in spleen and subcutaneous lymph nodes, illustrating a complex and organ specific dynamics of lymphocyte subpopulations. Accordingly, T- and B-cell activation is seen in subcutaneous lymph nodes and spleen, but not in mesenteric lymph nodes. Lastly, although the function of peripheral CD4(+)CD8(+) T-cell population remains to be defined in vivo, their presence may contribute to the immunopathological events found in both murine and human Chagas disease.

14.
Brain Behav Immun ; 24(3): 451-61, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19948213

RESUMO

Previous evidence indicated that growth hormone (GH) modulates cell migration in the thymus, and that extracellular matrix and chemokines are involved. Herein, we studied migration of peripheral lymphocytes derived from spleen and lymph nodes of GH-transgenic (GH-Tg) mice. We initially found that the relative cell numbers (normalized per gram of body weight) in lymph nodes and spleens from GH-Tg were higher at all ages tested (2-3, 7 and 12 months), as compared to wild type age-matched controls. Functionally, we found that lymphocyte migration triggered by laminin or fibronectin was enhanced in cells from GH-Tg versus control mice, independent of the organ from which the cells were derived (as ascertained in young adult animals). However, such an enhancement in migration was statistically significant only for CD4+ and CD8+ T cells from mesenteric lymph nodes. Migration of lymphocytes from mesenteric lymph nodes of GH-Tg mice, triggered by the chemokine CXCL12, in conjunction with laminin or fibronectin, was enhanced compared to lymphocytes from control mice. Rather surprisingly, the membrane levels of the corresponding extracellular matrix or chemokine receptors in peripheral lymphoid organs of GH-Tg mice did not necessarily correlate with the changes seen in migratory responses. In conclusion, our data show for the first time that GH alters lymphocyte migration in the periphery of the immune system. Considering that GH is used as an adjuvant therapeutic agent in immunodeficiencies, including AIDS, the concepts defined herein provide relevant background knowledge for future GH-related immune interventions.


Assuntos
Quimiocinas/metabolismo , Matriz Extracelular/fisiologia , Hormônio do Crescimento/genética , Hormônio do Crescimento/fisiologia , Linfócitos/fisiologia , Animais , Subpopulações de Linfócitos B/fisiologia , Movimento Celular , Quimiotaxia de Leucócito , Feminino , Fibronectinas/metabolismo , Citometria por Imagem , Imuno-Histoquímica , Linfonodos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Baço/patologia , Subpopulações de Linfócitos T/fisiologia
15.
Oncogene ; 24(32): 5119-24, 2005 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-15856008

RESUMO

Understanding of the signal transduction pathways that lead to B cell development is of extreme interest to learn how alterations in these pathways might initiate malignant transformation. Long-term cultured early pre-BI cells can differentiate into IgM+ B cells after transplant into NOD/SCID mice, offering the possibility to explore checkpoints in B cell development. Using DNA microarray and Western blot analysis of IgM+ B cells vs parental early pre-BI cells, we demonstrated that zeta-associated protein 70 (ZAP-70) is upregulated in our B cell differentiation model. Unlike parental ZAP-70- early pre-BI cells, ZAP-70+ IgM+ B cells exhibited a transformed phenotype, as indicated by BCL-6 expression, a high Ki-67 proliferation index, resistance to IL-7 deprivation-induced apoptosis, and an increased repopulation rate in NOD/SCID mice. These data show the characterization and generation of a novel murine leukemia model with many similarities to human ZAP-70+ B cell chronic lymphocytic leukemia.


Assuntos
Linfócitos B/transplante , Proteínas Tirosina Quinases/genética , Animais , Linfócitos B/citologia , Linfócitos B/fisiologia , Células Cultivadas , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais , Proteína-Tirosina Quinase ZAP-70
16.
Cancer Cell ; 6(4): 399-408, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15488762

RESUMO

A tumor-supporting role for the TNF-like ligand APRIL has been suggested. Here we describe that 9- to 12-month-old APRIL transgenic mice develop lymphoid tumors that originate from expansion of the peritoneal B-1 B cell population. Aging APRIL transgenic mice develop progressive hyperplasia in mesenteric lymph nodes and Peyer's patches, disorganization of affected lymphoid tissues, mucosal and capsular infiltration, and eventual tumor cell infiltration into nonlymphoid tissues such as kidney and liver. We detected significantly increased APRIL levels in sera of B cell chronic lymphoid leukemia (B-CLL) patients, indicating that APRIL promotes onset of B-1-associated neoplasms and that APRIL antagonism may provide a therapeutic strategy to treat B-CLL patients.


Assuntos
Transformação Celular Neoplásica , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Proteínas de Membrana/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Envelhecimento , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patologia , Rim/metabolismo , Rim/patologia , Leucemia de Células B/sangue , Leucemia de Células B/genética , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/sangue , Baço/crescimento & desenvolvimento , Baço/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/genética
17.
Eur J Immunol ; 34(2): 548-57, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14768060

RESUMO

Lymphocyte infiltration to pancreatic islets is associated to chemoattraction, as are other inflammatory autoimmune processes. We examined whether development of insulitis and diabetes depends on chemoattraction of lymphocytes via the CCR5 chemokine receptor. In non-obese diabetic (NOD) mice, a substantial fraction of peripheral T cells and virtually all B cells expressed high CCR5 levels. CCR5 expression characterized the effector T cell phenotype, suggesting their potential involvement in disease development. In view of these findings and the CCL5 (RANTES, the CCR5 ligand) expression by pancreatic islets, we treated NOD mice with a neutralizing anti-CCR5 antibody. This did not influence peri-insulitis advancement, but inhibited beta-cell destruction and diabetes. These data demonstrate a role of CCR5-dependent chemoattraction in insulitis progression to islet destruction, suggesting the potential value of therapeutic intervention by CCR5 targeting.


Assuntos
Linfócitos B/imunologia , Diabetes Mellitus/imunologia , Receptores CCR5/imunologia , Linfócitos T/imunologia , Animais , Movimento Celular/imunologia , Quimiocinas/genética , Quimiocinas/imunologia , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos NOD , RNA/genética , RNA/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
J Exp Med ; 196(3): 311-21, 2002 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12163560

RESUMO

Hematopoietic cell growth, differentiation, and chemotactic responses require coordinated action between cytokines and chemokines. Cytokines promote receptor oligomerization, followed by Janus kinase (JAK) kinase activation, signal transducers and transactivators of transcription (STAT) nuclear translocation, and transcription of cytokine-responsive genes. These include genes that encode a family of negative regulators of cytokine signaling, the suppressors of cytokine signaling (SOCS) proteins. After binding their specific receptors, chemokines trigger receptor dimerization and activate the JAK/STAT pathway. We show that SOCS3 overexpression or up-regulation, stimulated by a cytokine such as growth hormone, impairs the response to CXCL12, measured by Ca(2+) flux and chemotaxis in vitro and in vivo. This effect is mediated by SOCS3 binding to the CXC chemokine receptor 4 receptor, blocking JAK/STAT and Galpha(i) pathways, without interfering with cell surface chemokine receptor expression. The data provide clear evidence for signaling cross-talk between cytokine and chemokine responses in building a functional immune system.


Assuntos
Quimiocinas CXC/fisiologia , Proteínas/fisiologia , Receptores CXCR4/fisiologia , Proteínas Repressoras , Fatores de Transcrição , Animais , Cálcio/metabolismo , Quimiocina CXCL12 , Proteínas de Ligação a DNA/fisiologia , Hormônio do Crescimento/farmacologia , Humanos , Janus Quinase 1 , Proteínas Tirosina Quinases/fisiologia , Receptores CXCR4/antagonistas & inibidores , Fator de Transcrição STAT3 , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina , Transativadores/fisiologia , Regulação para Cima
19.
J Immunol ; 169(2): 1058-67, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12097414

RESUMO

Anti-DNA autoantibody production is a key factor in lupus erythematosus development; nonetheless, the link between glomerular anti-DNA autoantibody deposition and glomerulonephritis development is not understood. To study the inflammatory and destructive processes in kidney, we used IFN-gamma(+/-) MRL/lpr mice which produce high anti-DNA Ab levels but are protected from kidney disease. The results showed that defective macrophage recruitment to IFN-gamma(+/-) mouse kidney was not caused by decreased levels of monocyte chemoattractant protein-1, a chemokine that controls macrophage migration to MRL/lpr mouse kidney. To determine which IFN-gamma-producing cell type orchestrates the inflammation pathway in kidney, we transferred IFN-gamma(+/+) monocyte/macrophages or T cells to IFN-gamma(-/-) mice, which do not develop anti-DNA autoantibodies. The data demonstrate that IFN-gamma production by infiltrating macrophages, and not by T cells, is responsible for adhesion molecule up-regulation, macrophage accumulation, and inflammation in kidney, even in the absence of autoantibody deposits. Therefore, in addition to monocyte chemoattractant protein-1, macrophage-produced IFN-gamma controls macrophage migration to kidney; the degree of IFN-gamma production by macrophages also regulates glomerulonephritis development. Our findings establish the level of IFN-gamma secretion by macrophages as a link between anti-DNA autoantibody deposition and glomerulonephritis development, outline the pathway of the inflammatory process, and suggest potential treatment for disease even after autoantibody development.


Assuntos
Comunicação Autócrina/imunologia , Movimento Celular/imunologia , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Interferon gama/biossíntese , Rim/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Autoanticorpos/biossíntese , Comunicação Autócrina/genética , Moléculas de Adesão Celular/biossíntese , Movimento Celular/genética , Quimiocina CCL2/biossíntese , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Triagem de Portadores Genéticos , Glomerulonefrite/etiologia , Glomerulonefrite/genética , Interferon gama/deficiência , Interferon gama/genética , Interferon gama/fisiologia , Rim/patologia , Glomérulos Renais/imunologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Pulmão/imunologia , Pulmão/patologia , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Camundongos , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Regulação para Cima/genética , Regulação para Cima/imunologia
20.
J Clin Invest ; 109(12): 1587-98, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12070306

RESUMO

The TNF-like ligands APRIL and BLyS are close relatives and share the capacity to bind the receptors TACI and BCMA. BLyS has been shown to play an important role in B cell homeostasis and autoimmunity, but the biological role of APRIL remains less well defined. Analysis of T cells revealed an activation-dependent increase in APRIL mRNA expression. We therefore generated mice expressing APRIL as a transgene in T cells. These mice appeared normal and showed no signs of B cell hyperplasia. Transgenic T cells revealed a greatly enhanced survival in vitro as well as enhanced survival of staphylococcal enterotoxin B-reactive CD4+ T cells in vivo, which both directly correlate with elevated Bcl-2 levels. Analysis of humoral responses to T cell-dependent antigens in the transgenic mice indicated that APRIL affects only IgM but not IgG responses. In contrast, T cell-independent type 2 (TI-2) humoral response was enhanced in APRIL transgenic mice. As TACI was previously reported to be indispensable for TI-2 antibody formation, these results suggest a role for APRIL/TACI interactions in the generation of this response. Taken together, our data indicate that APRIL is involved in the induction and/or maintenance of T and B cell responses.


Assuntos
Linfócitos B/imunologia , Proteínas de Membrana/imunologia , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Formação de Anticorpos , Linfócitos B/citologia , Divisão Celular , Sobrevivência Celular , Expressão Gênica , Humanos , Ligantes , Tecido Linfoide/imunologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Baço/citologia , Linfócitos T/citologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...