Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 99, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566096

RESUMO

BACKGROUND: The yeast Komagataella phaffii has become a very popular host for heterologous protein expression, very often based on the use of the AOX1 promoter, which becomes activated when cells are grown with methanol as a carbon source. However, the use of methanol in industrial settings is not devoid of problems, and therefore, the search for alternative expression methods has become a priority in the last few years. RESULTS: We recently reported that moderate alkalinization of the medium triggers a fast and wide transcriptional response in K. phaffii. Here, we present the utilization of three alkaline pH-responsive promoters (pTSA1, pHSP12 and pPHO89) to drive the expression of a secreted phytase enzyme by simply shifting the pH of the medium to 8.0. These promoters offer a wide range of strengths, and the production of phytase could be modulated by adjusting the pH to specific values. The TSA1 and PHO89 promoters offered exquisite regulation, with virtually no enzyme production at acidic pH, while limitation of Pi in the medium further potentiated alkaline pH-driven phytase expression from the PHO89 promoter. An evolved strain based on this promoter was able to produce twice as much phytase as the reference pAOX1-based strain. Functional mapping of the TSA1 and HSP12 promoters suggests that both contain at least two alkaline pH-sensitive regulatory regions. CONCLUSIONS: Our work shows that the use of alkaline pH-regulatable promoters could be a useful alternative to methanol-based expression systems, offering advantages in terms of simplicity, safety and economy.


Assuntos
6-Fitase , Saccharomycetales , Pichia/metabolismo , Metanol/metabolismo , 6-Fitase/genética , 6-Fitase/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo
3.
Microb Cell Fact ; 22(1): 63, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37013612

RESUMO

BACKGROUND: Adaptation to alkalinization of the medium in fungi involves an extensive remodeling of gene expression. Komagataella phaffii is an ascomycetous yeast that has become an organism widely used for heterologous protein expression. We explore here the transcriptional impact of moderate alkalinization in this yeast, in search of suitable novel promoters able to drive transcription in response to the pH signal. RESULTS: In spite of a minor effect on growth, shifting the cultures from pH 5.5 to 8.0 or 8.2 provokes significant changes in the mRNA levels of over 700 genes. Functional categories such as arginine and methionine biosynthesis, non-reductive iron uptake and phosphate metabolism are enriched in induced genes, whereas many genes encoding iron-sulfur proteins or members of the respirasome were repressed. We also show that alkalinization is accompanied by oxidative stress and we propose this circumstance as a common trigger of a subset of the observed changes. PHO89, encoding a Na+/Pi cotransporter, appears among the most potently induced genes by high pH. We demonstrate that this response is mainly based on two calcineurin-dependent response elements located in its promoter, thus indicating that alkalinization triggers a calcium-mediated signal in K. phaffii. CONCLUSIONS: This work defines in K. phaffii a subset of genes and diverse cellular pathways that are altered in response to moderate alkalinization of the medium, thus setting the basis for developing novel pH-controlled systems for heterologous protein expression in this fungus.


Assuntos
Ascomicetos , Saccharomycetales , Transcriptoma , Saccharomycetales/genética , Perfilação da Expressão Gênica , Ascomicetos/genética
4.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982620

RESUMO

The Saccharomyces cerevisiae ENA1 gene, encoding a Na+-ATPase, responds transcriptionally to the alkalinization of the medium by means of a network of signals that involves the Rim101, the Snf1 and PKA kinases, and the calcineurin/Crz1 pathways. We show here that the ENA1 promoter also contains a consensus sequence, located at nt -553/-544, for the Stp1/2 transcription factors, the downstream components of the amino acid sensing SPS pathway. Mutation of this sequence or deletion of either STP1 or STP2 decreases the activity of a reporter containing this region in response to alkalinization as well as to changes in the amino acid composition in the medium. Expression driven from the entire ENA1 promoter was affected with similar potency by the deletion of PTR3, SSY5, or simultaneous deletion of STP1 and STP2 when cells were exposed to alkaline pH or moderate salt stress. However, it was not altered by the deletion of SSY1, encoding the amino acid sensor. In fact, functional mapping of the ENA1 promoter reveals a region spanning from nt -742 to -577 that enhances transcription, specifically in the absence of Ssy1. We also found that the basal and alkaline pH-induced expression from the HXT2, TRX2, and, particularly, SIT1 promoters was notably decreased in an stp1 stp2 deletion mutant, whereas the PHO84 and PHO89 gene reporters were unaffected. Our findings add a further layer of complexity to the regulation of ENA1 and suggest that the SPS pathway might participate in the regulation of a subset of alkali-inducible genes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Aminoácidos/metabolismo , Regulação Fúngica da Expressão Gênica , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/metabolismo
5.
J Fungi (Basel) ; 8(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36294631

RESUMO

Hal3 (Sis2) is a yeast protein that was initially identified as a regulatory subunit of the Saccharomyces cerevisiae Ser/Thr protein phosphatase Ppz1. A few years later, it was shown to participate in the formation of an atypical heterotrimeric phosphopantothenoylcysteine decarboxylase (PPCDC) enzyme, thus catalyzing a key reaction in the pathway leading to Coenzyme A biosynthesis. Therefore, Hal3 was defined as a moonlighting protein. The structure of Hal3 in some fungi is made of a conserved core, similar to bacterial or mammalian PPCDCs; meanwhile, in others, the gene encodes a larger protein with N- and C-terminal extensions. In this work, we describe how Hal3 (and its close relative Cab3) participates in these disparate functions and we review recent findings that could make it possible to predict which of these two proteins will show moonlighting properties in fungi.

6.
FEBS J ; 289(23): 7500-7518, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35811492

RESUMO

The function of the Saccharomyces cerevisiae Ppz1 phosphatase is controlled by its inhibitory subunit Hal3. Hal3 is a moonlighting protein, which associates with Cab3 to form a decarboxylase involved in the CoA biosynthetic pathway. Hal3 is composed by a conserved core PD region, required for both Ppz1 regulation and CoA biosynthesis, a long N-terminal extension, and an acidic C-terminal tail. Cab3 has a similar structure, but it is not a Ppz1 inhibitor. We show here that deletion or specific mutations in a short region of the N-terminal extension of Hal3 compromise its function as a Ppz1 inhibitor in vivo and in vitro without negatively affecting its ability to interact with the phosphatase. This study defines a R-K-X(3) -VTFS- sequence whose presence explains the unexpected ability of Cab3 (but not Hal3) to regulate Ppz1 function in Candida albicans. This sequence is conserved in a subset of fungi and it could serve to estimate the relevance of Hal3 or Cab3 proteins in regulating fungal Ppz enzymes. We also show that the removal of the motif moderately affects both Ppz1 intracellular relocalization and counteraction of toxicity in cells overexpressing the phosphatase. Thus, our work contributes to our understanding of the regulation of Ppz phosphatases, which are determinants for virulence in some pathogenic fungi.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Monoéster Fosfórico Hidrolases , Coenzima A , Fosfoproteínas Fosfatases/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457140

RESUMO

The fact that overexpression of the yeast Ser/Thr protein phosphatase Ppz1 induces a dramatic halt in cell proliferation was known long ago, but only work in the last few years has provided insight into the molecular basis for this toxicity. Overexpression of Ppz1 causes abundant changes in gene expression and modifies the phosphorylation state of more than 150 proteins, including key signaling protein kinases such as Hog1 or Snf1. Diverse cellular processes are altered: halt in translation, failure to properly adapt to low glucose supply, acidification of the cytosol, or depletion of intracellular potassium content are a few examples. Therefore, the toxicity derived from an excess of Ppz1 appears to be multifactorial, the characteristic cell growth blockage thus arising from the combination of various altered processes. Notably, overexpression of the Ppz1 regulatory subunit Hal3 fully counteracts the toxic effects of the phosphatase, and this process involves intracellular relocation of the phosphatase to internal membranes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
FEBS Lett ; 596(12): 1556-1566, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35278214

RESUMO

Overexpression of Saccharomyces cerevisiae protein phosphatase Ppz1 strongly impairs cell growth. Ppz1 is negatively regulated by its subunit Hal3, and Hal3 overexpression fully counteracts the toxic effects derived from high levels of the phosphatase. We show that Ppz1 localizes at the plasma membrane, and that co-expression of Hal3 recruits Ppz1 to internal membranes (mostly vacuolar). This effect is not observed in a catalytically impaired mutant of Ppz1. Disruption of intracellular trafficking by deletion of the ESCRT-0 component VPS27 abolishes both Hal3-mediated relocalization of Ppz1 and normalization of cell growth, without affecting Ppz1 protein levels. We propose that Hal3 counteracts the toxic effects caused by excess of Ppz1 not only by inhibiting its enzymatic activity but also by recruiting the phosphatase to internal structures.


Assuntos
Proteínas de Ciclo Celular , Complexos Endossomais de Distribuição Requeridos para Transporte , Fosfoproteínas Fosfatases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163251

RESUMO

Type 1 Ser/Thr protein phosphatases are represented in all fungi by two enzymes, the ubiquitous PP1, with a conserved catalytic polypeptide (PP1c) and numerous regulatory subunits, and PPZ, with a C-terminal catalytic domain related to PP1c and a variable N-terminal extension. Current evidence indicates that, although PP1 and PPZ enzymes might share some cellular targets and regulatory subunits, their functions are quite separated, and they have individual regulation. We explored the structures of PP1c and PPZ across 57 fungal species to identify those features that (1) are distinctive among these enzymes and (2) have been preserved through evolution. PP1c enzymes are more conserved than PPZs. Still, we identified 26 residues in the PP1 and PPZ catalytic moieties that are specific for each kind of phosphatase. In some cases, these differences likely affect the distribution of charges in the surface of the protein. In many fungi, Hal3 is a specific inhibitor of the PPZ phosphatases, although the basis for the interaction of these proteins is still obscure. By in vivo co-purification of the catalytic domain of ScPpz1 and ScHal3, followed by chemical cross-linking and MS analysis, we identified a likely Hal3-interacting region in ScPpz1 characterized by two major and conserved differences, D566 and D615 in ScPpz1, which correspond to K210 and K259 in ScPP1c (Glc7). Functional analysis showed that changing D615 to K renders Ppz1 refractory to Hal3 inhibition. Since ScHal3 does not regulate Glc7 but it inhibits all fungal PPZ tested so far, this conserved D residue could be pivotal for the differential regulation of both enzymes in fungi.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico/fisiologia , Fenótipo , Proteína Fosfatase 1/metabolismo
10.
J Fungi (Basel) ; 7(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34946993

RESUMO

The alteration of the fine-tuned balance of phospho/dephosphorylation reactions in the cell often results in functional disturbance. In the yeast Saccharomyces cerevisiae, the overexpression of Ser/Thr phosphatase Ppz1 drastically blocks cell proliferation, with a profound change in the transcriptomic and phosphoproteomic profiles. While the deleterious effect on growth likely derives from the alteration of multiple targets, the precise mechanisms are still obscure. Ppz1 is a negative effector of potassium influx. However, we show that the toxic effect of Ppz1 overexpression is unrelated to the Trk1/2 high-affinity potassium importers. Cells overexpressing Ppz1 exhibit decreased K+ content, increased cytosolic acidification, and fail to properly acidify the medium. These effects, as well as the growth defect, are counteracted by the deletion of NHA1 gene, which encodes a plasma membrane Na+, K+/H+ antiporter. The beneficial effect of a lack of Nha1 on the growth vanishes as the pH of the medium approaches neutrality, is not eliminated by the expression of two non-functional Nha1 variants (D145N or D177N), and is exacerbated by a hyperactive Nha1 version (S481A). All our results show that high levels of Ppz1 overactivate Nha1, leading to an excessive entry of H+ and efflux of K+, which is detrimental for growth.

11.
Int J Mol Sci ; 21(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086699

RESUMO

The Ppz enzymes are Ser/Thr protein phosphatases present only in fungi that are characterized by a highly conserved C-terminal catalytic region, related to PP1c phosphatases, and a more divergent N-terminal extension. In Saccharomyces cerevisiae, Ppz phosphatases are encoded by two paralog genes, PPZ1 and PPZ2. Ppz1 is the most toxic protein when overexpressed in budding yeast, halting cell proliferation, and this effect requires its phosphatase activity. We show here that, in spite of their conserved catalytic domain, Ppz2 was not toxic when tested under the same conditions as Ppz1, albeit Ppz2 levels were somewhat lower. Remarkably, a hybrid protein composed of the N-terminal extension of Ppz1 and the catalytic domain of Ppz2 was as toxic as Ppz1, even if its expression level was comparable to that of Ppz2. Similar amounts of yeast PP1c (Glc7) produced an intermediate effect on growth. Mutation of the Ppz1 myristoylable Gly2 to Ala avoided the localization of the phosphatase at the cell periphery but only slightly attenuated its toxicity. Therefore, the N-terminal extension of Ppz1 plays a key role in defining Ppz1 toxicity. This region is predicted to be intrinsically disordered and contains several putative folding-upon-binding regions which are absent in Ppz2 and might be relevant for toxicity.


Assuntos
Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/toxicidade , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/toxicidade , Saccharomyces cerevisiae/metabolismo , Temperatura Alta , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Fenótipo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
12.
Sci Rep ; 10(1): 15613, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973189

RESUMO

Control of the protein phosphorylation status is a major mechanism for regulation of cellular processes, and its alteration often lead to functional disorders. Ppz1, a protein phosphatase only found in fungi, is the most toxic protein when overexpressed in Saccharomyces cerevisiae. To investigate the molecular basis of this phenomenon, we carried out combined genome-wide transcriptomic and phosphoproteomic analyses. We have found that Ppz1 overexpression causes major changes in gene expression, affecting ~ 20% of the genome, together with oxidative stress and increase in total adenylate pools. Concurrently, we observe changes in the phosphorylation pattern of near 400 proteins (mainly dephosphorylated), including many proteins involved in mitotic cell cycle and bud emergence, rapid dephosphorylation of Snf1 and its downstream transcription factor Mig1, and phosphorylation of Hog1 and its downstream transcription factor Sko1. Deletion of HOG1 attenuates the growth defect of Ppz1-overexpressing cells, while that of SKO1 aggravates it. Our results demonstrate that Ppz1 overexpression has a widespread impact in the yeast cells and reveals new aspects of the regulation of the cell cycle.


Assuntos
Regulação Fúngica da Expressão Gênica , Metaboloma , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Ciclo Celular , Dano ao DNA , Fosfoproteínas Fosfatases/genética , Fosforilação , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
13.
Adv Protein Chem Struct Biol ; 122: 231-288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32951813

RESUMO

Protein phosphatase 1 is a major Ser/Thr protein phosphatase activity in eukaryotic cells. It is composed of a catalytic polypeptide (PP1C), with little substrate specificity, that interacts with a large variety of proteins of diverse structure (regulatory subunits). The diversity of holoenzymes that can be formed explain the multiplicity of cellular functions under the control of this phosphatase. In quite a few cases, regulatory subunits have an inhibitory role, downregulating the activity of the phosphatase. In this chapter we shall introduce PP1C and review the most relevant families of PP1C regulatory subunits, with particular emphasis in describing the structural basis for their interaction.


Assuntos
Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Animais , Humanos , Serina/química , Serina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Treonina/química , Treonina/metabolismo
14.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118727, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32339526

RESUMO

The Ser/Thr protein phosphatase Ppz1 from Saccharomyces cerevisiae is the best characterized member of a family of enzymes only found in fungi. Ppz1 is regulated in vivo by two inhibitory subunits, Hal3 and Vhs3, which are moonlighting proteins also involved in the decarboxylation of the 4-phosphopantothenoylcysteine (PPC) intermediate required for coenzyme A biosynthesis. It has been reported that, when overexpressed, Ppz1 is the most toxic protein in yeast. However, the reasons for such toxicity have not been elucidated. Here we show that the detrimental effect of excessive Ppz1 expression is due to an increase in its phosphatase activity and not to a plausible down-titration of the PPC decarboxylase components. We have identified several genes encoding ribosomal proteins and ribosome assembly factors as mild high-copy suppressors of the toxic Ppz1 effect. Ppz1 binds to ribosomes engaged in translation and copurifies with diverse ribosomal proteins and translation factors. Ppz1 overexpression results in Gcn2-dependent increased phosphorylation of eIF2α at Ser-51. Consistently, deletion of GCN2 partially suppresses the growth defect of a Ppz1 overexpressing strain. We propose that the deleterious effects of Ppz1 overexpression are in part due to alteration in normal protein synthesis.


Assuntos
Fosfoproteínas Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/enzimologia , Saccharomycetales/metabolismo , Carboxiliases , Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/toxicidade , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/toxicidade , Saccharomycetales/genética , Transcriptoma
15.
Microb Cell ; 6(5): 217-256, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31114794

RESUMO

Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.

16.
Mol Microbiol ; 101(4): 671-87, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27169355

RESUMO

Lack of the yeast Ptc1 Ser/Thr protein phosphatase results in numerous phenotypic defects. A parallel search for high-copy number suppressors of three of these phenotypes (sensitivity to Calcofluor White, rapamycin and alkaline pH), allowed the isolation of 25 suppressor genes, which could be assigned to three main functional categories: maintenance of cell wall integrity (CWI), vacuolar function and protein sorting, and cell cycle regulation. The characterization of these genetic interactions strengthens the relevant role of Ptc1 in downregulating the Slt2-mediated CWI pathway. We show that under stress conditions activating the CWI pathway the ptc1 mutant displays hyperphosphorylated Cdc28 kinase and that these cells accumulate with duplicated DNA content, indicative of a G2-M arrest. Clb2-associated Cdc28 activity was also reduced in ptc1 cells. These alterations are attenuated by mutation of the MKK1 gene, encoding a MAP kinase kinase upstream Slt2. Therefore, our data show that Ptc1 is required for proper G2-M cell cycle transition after activation of the CWI pathway.


Assuntos
Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Parede Celular/genética , Parede Celular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína Fosfatase 2/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Biochim Biophys Acta ; 1861(3): 249-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26743850

RESUMO

Pkh is the yeast ortholog of the mammalian 3-phosphoinositide-dependent protein kinase 1 (PDK1). Pkh phosphorylates the activation loop of Ypks, Tpks, Sch9 and also phosphorylates the eisosome components Lsp1 and Pil1, which play fundamental roles upstream of diverse signaling pathways, including the cell wall integrity and sphingosine/long-chain base (LCB) signaling pathways. In S. cerevisiae, two isoforms, ScPkh1 and ScPkh2, are required for cell viability, while only one ortholog exists in C. albicans, CaPkh2. In spite of the extensive information gathered on the role of Pkh in the LCB signaling, the yeast Pkh kinases are not known to bind lipids and previous studies did not identify PH domains in Pkh sequences. We now describe that the C-terminal region of CaPkh2 is required for its intrinsic kinase activity. In addition, we found that the C-terminal region of CaPkh2 enables its interaction with structural and signaling lipids. Our results further show that phosphatidylserine, phosphatidic acid, phosphatidylinositol (3,4 and 4,5)-biphosphates, and phosphatidylinositol (3,4,5)-trisphosphate inhibit Pkh activity, whereas sulfatide binds with high affinity but does not affect the intrinsic activity of CaPkh2. Interestingly, we identified that its human ortholog PDK1 also binds to sulfatide. We propose a mechanism by which lipids and dihydrosphingosine regulate CaPkh2 kinase activity by modulating the interaction of the C-terminal region with the kinase domain, while sulfatide-like lipids support localization CaPkh2 mediated by a C-terminal PH domain, without affecting kinase intrinsic activity.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Metabolismo dos Lipídeos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Sequência de Aminoácidos , Sítios de Ligação , Candida albicans/genética , Biologia Computacional , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilserinas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Relação Estrutura-Atividade , Sulfoglicoesfingolipídeos/metabolismo , Transfecção
18.
BMC Genomics ; 16: 719, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26391581

RESUMO

BACKGROUND: Pkh proteins are the PDK1 orthologs in S. cerevisiae. They have redundant and essential activity and are responsible for the phosphorylation of several members of the AGC family of protein kinases. Pkh proteins have been involved in several cellular functions, including cell wall integrity and endocytosis. However the global expression changes caused by their depletion are still unknown. RESULTS: A doxycycline-repressible tetO7 promoter driving the expression of PKH2 in cells carrying deletions of the PKH1 and PKH3 genes allowed us to progressively deplete cells from Pkh proteins when treated with doxycycline. Global gene expression analysis indicate that depletion of Pkh results in the up-regulation of genes involved in the accumulation of glycogen and also of those related to stress responses. Moreover, genes involved in the ion transport were quickly down-regulated when the levels of Pkh decreased. The reduction in the mRNA levels required for protein translation, however, was only observed after longer doxycycline treatment (24 h). We uncovered that Pkh is important for the proper transcriptional response to heat shock, and is mostly required for the effects driven by the transcription factors Hsf1 and Msn2/Msn4, but is not required for down-regulation of the mRNA coding for ribosomal proteins. CONCLUSIONS: By using the tetO7 promoter we elucidated for the first time the transcriptomic changes directly or indirectly caused by progressive depletion of Pkh. Furthermore, this system enabled the characterization of the transcriptional response triggered by heat shock in wild-type and Pkh-depleted cells, showing that about 40 % of the observed expression changes were, to some degree, dependent on Pkh.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Transcrição Gênica , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Análise por Conglomerados , Fermentação , Perfilação da Expressão Gênica , Genes Letais , Glicogênio/metabolismo , Resposta ao Choque Térmico/genética , Íons , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Biochem J ; 468(1): 33-47, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25730376

RESUMO

Glc7 is the only catalytic subunit of the protein phosphatase type 1 in the yeast S. cerevisiae and, together with its regulatory subunits, is involved in many essential processes. Analysis of the non-essential mutants in the regulatory subunits of Glc7 revealed that the lack of Reg1, and no other subunit, causes hypersensitivity to unfolded protein response (UPR)-inducers, which was concomitant with an augmented UPR element-dependent transcriptional response. The Glc7-Reg1 complex takes part in the regulation of the yeast AMP-activated serine/threonine protein kinase Snf1 in response to glucose. We demonstrate in the present study that the observed phenotypes of reg1 mutant cells are attributable to the inappropriate activation of Snf1. Indeed, growth in the presence of limited concentrations of glucose, where Snf1 is active, or expression of active forms of Snf1 in a wild-type strain increased the sensitivity to the UPR-inducer tunicamycin. Furthermore, reg1 mutant cells showed a sustained HAC1 mRNA splicing and KAR2 mRNA levels during the recovery phase of the UPR, and dysregulation of the Ire1-oligomeric equilibrium. Finally, overexpression of protein phosphatases Ptc2 and Ptc3 alleviated the growth defect of reg1 cells under endoplasmic reticulum (ER) stress conditions. Altogether, our results reveal that Snf1 plays an important role in the attenuation of the UPR, as well as identifying the protein kinase and its effectors as possible pharmacological targets for human diseases that are associated with insufficient UPR activation.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas , Domínio Catalítico/genética , Estresse do Retículo Endoplasmático , Ativação Enzimática , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Multimerização Proteica , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2C , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Splicing de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
20.
ACS Chem Biol ; 8(10): 2283-92, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23911092

RESUMO

The phosphoinositide-dependent protein kinase 1, PDK1, is a master kinase that phosphorylates the activation loop of up to 23 AGC kinases. S. cerevisiae has three PDK1 orthologues, Pkh1-3, which also phosphorylate AGC kinases (e.g., Ypk, Tpk, Pkc1, and Sch9). Pkh1 and 2 are redundant proteins involved in multiple essential cellular functions, including endocytosis and cell wall integrity. Based on similarities with the budding yeast, the Pkh of fungal infectious species was postulated as a novel target for antifungals. Here, we found that depletion of Pkh eventually induces oxidative stress and DNA double-strand breaks, leading to programmed cell death. This finding supports Pkh as an antifungal target since pharmacological inhibition of Pkh would lead to the death of yeast cells, the ultimate goal of antifungals. It was therefore of interest to further investigate the possibility to develop Pkh inhibitors with selectivity for Candida Pkh that would not inhibit the human ortholog. Here, we describe C. albicans Pkh2 biochemically, structurally and by using chemical probes in comparison to human PDK1. We found that a regulatory site on the C. albicans Pkh2 catalytic domain, the PIF-pocket, diverges from human PDK1. Indeed, we identified and characterized PS77, a new small allosteric inhibitor directed to the PIF-pocket, which has increased selectivity for C. albicans Pkh2. Together, our results describe novel features of the biology of Pkh and chemical biology approaches that support the validation of Pkh as a drug target for selective antifungals.


Assuntos
Candida albicans/efeitos dos fármacos , Chalconas/farmacologia , Sistemas de Liberação de Medicamentos , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Receptores de Neurotransmissores/metabolismo , Tioglicolatos/farmacologia , Regulação Alostérica , Antifúngicos/química , Antifúngicos/farmacologia , Sítios de Ligação , Candida albicans/enzimologia , Chalconas/química , Ativação Enzimática/efeitos dos fármacos , Humanos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio , Tioglicolatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...