Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(8): 2104-2112, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633050

RESUMO

Due to their biocompatibility and biodegradability and their unique structural and physicochemical properties, laser-synthesized silicon nanoparticles (Si-NPs) are one of the nanomaterials which have been most studied as potential theragnostic tools for non-invasive therapeutic modalities. However, their ability to modulate cell behavior and to promote proliferation and differentiation is still very little investigated or unknown. In this work, ultrapure ligand free Si-NPs of 50 ± 11.5 nm were prepared by femtosecond (fs) laser ablation in liquid. After showing the ability of Si-NPs to be internalized by murine C2C12 myoblasts, the cytotoxicity of the Si-NPs on these cells was evaluated at concentrations ranging from 14 to 224 µg mL-1. Based on these findings, three concentrations of 14, 28 and 56 µg mL-1 were thus considered to study the effect on myoblast differentiation, proliferation and motility at the molecular and phenotypical levels. It was demonstrated that up to 28 µg mL-1, the Si-NPs are able to promote the proliferation of myoblasts and their subsequent differentiation. Scratch tests were also performed revealing the positive Si-NP effect on cellular motility at 14 and 28 µg mL-1. Finally, gene expression analysis confirmed the ability of Si-NPs to promote proliferation, differentiation and motility of myoblasts even at very low concentration. This work opens up novel exciting prospects for Si-NPs made by the laser process as innovative tools for skeletal muscle tissue engineering in view of developing novel therapeutic protocols for regenerative medicine.

2.
Nanomaterials (Basel) ; 11(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809072

RESUMO

Driven by flexibility, precision, repeatability and eco-friendliness, laser-based technologies have attracted great interest to engineer or to analyze materials in various fields including energy, environment, biology and medicine. A major advantage of laser processing relies on the ability to directly structure matter at different scales and to prepare novel materials with unique physical and chemical properties. It is also a contact-free approach that makes it possible to work in inert or reactive liquid or gaseous environment. This leads today to a unique opportunity for designing, fabricating and even analyzing novel complex bio-systems. To illustrate this potential, in this paper, we gather our recent research on four types of laser-based methods relevant for nano-/micro-scale applications. First, we present and discuss pulsed laser ablation in liquid, exploited today for synthetizing ultraclean "bare" nanoparticles attractive for medicine and tissue engineering applications. Second, we discuss robust methods for rapid surface and bulk machining (subtractive manufacturing) at different scales by laser ablation. Among them, the microsphere-assisted laser surface engineering is detailed for its appropriateness to design structured substrates with hierarchically periodic patterns at nano-/micro-scale without chemical treatments. Third, we address the laser-induced forward transfer, a technology based on direct laser printing, to transfer and assemble a multitude of materials (additive structuring), including biological moiety without alteration of functionality. Finally, the fourth method is about chemical analysis: we present the potential of laser-induced breakdown spectroscopy, providing a unique tool for contact-free and space-resolved elemental analysis of organic materials. Overall, we present and discuss the prospect and complementarity of emerging reliable laser technologies, to address challenges in materials' preparation relevant for the development of innovative multi-scale and multi-material platforms for bio-applications.

3.
Langmuir ; 34(22): 6612-6620, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29754481

RESUMO

Despite significant progress, our knowledge of the functioning of the central nervous system still remains scarce to date. A better understanding of its behavior, in either normal or diseased conditions, goes through an increased knowledge of basic mechanisms involved in neuronal function, including at the single-cell level. This has motivated significant efforts for the development of miniaturized sensing devices to monitor neuronal activity with high spatial and signal resolution. One of the main challenges remaining to be addressed in this domain is, however, the ability to create in vitro spatially ordered neuronal networks at low density with a precise control of the cell location to ensure proper monitoring of the activity of a defined set of neurons. Here, we present a novel self-aligned chemical functionalization method, based on a repellant surface with patterned attractive areas, which permits the elaboration of low-density neuronal network down to individual cells with a high control of the soma location and axonal growth. This approach is compatible with complementary metal-oxide-semiconductor line technology at a wafer scale and allows performing the cell culture on packaged chip outside microelectronics facilities. Rat cortical neurons were cultured on such patterned surfaces for over one month and displayed a very high degree of organization in large networks. Indeed, more than 90% of the network nodes were settled by a soma and 100% of the connecting lines were occupied by a neurite, with a very good selectivity (low parasitic cell connections). After optimization, networks composed of 75% of unicellular nodes were obtained, together with a control at the micron scale of the location of the somas. Finally, we demonstrated that the dendritic neuronal growth was guided by the surface functionalization, even when micrometer scale topologies were encountered and we succeeded to control the extension growth along one-dimensional-aligned nanostructures with sub-micrometrical scale precision. This novel approach now opens the way for precise monitoring of neuronal network activity at the single-cell level.


Assuntos
Técnicas de Cultura de Células/métodos , Rede Nervosa/química , Animais , Células Cultivadas , Dendritos , Rede Nervosa/metabolismo , Neuritos , Neurônios/citologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...