Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1190409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771577

RESUMO

Cardiac allograft vasculopathy (CAV) is a coronary artery disease affecting 50% of heart transplant (HTx) recipients, and it is the major cause of graft loss. CAV is driven by the interplay of immunological and non-immunological factors, setting off a cascade of events promoting endothelial damage and vascular dysfunction. The etiology and evolution of tissue pathology are largely unknown, making disease management challenging. So far, in vivo models, mostly mouse-based, have been widely used to study CAV, but they are resource-consuming, pose many ethical issues, and allow limited investigation of time points and important biomechanical measurements. Recently, agent-based models (ABMs) proved to be valid computational tools for deciphering mechanobiological mechanisms driving vascular adaptation processes at the cell/tissue level, augmenting cost-effective in vivo lab-based experiments, at the same time guaranteeing richness in observation time points and low consumption of resources. We hypothesize that integrating ABMs with lab-based experiments can aid in vivo research by overcoming those limitations. Accordingly, this work proposes a bidimensional ABM of CAV in a mouse coronary artery cross-section, simulating the arterial wall response to two distinct stimuli: inflammation and hemodynamic disturbances, the latter considered in terms of low wall shear stress (WSS). These stimuli trigger i) inflammatory cell activation and ii) exacerbated vascular cell activities. Moreover, an extensive analysis was performed to investigate the ABM sensitivity to the driving parameters and inputs and gain insights into the ABM working mechanisms. The ABM was able to effectively replicate a 4-week CAV initiation and progression, characterized by lumen area decrease due to progressive intimal thickening in regions exposed to high inflammation and low WSS. Moreover, the parameter and input sensitivity analysis highlighted that the inflammatory-related events rather than the WSS predominantly drive CAV, corroborating the inflammatory nature of the vasculopathy. The proof-of-concept model proposed herein demonstrated its potential in deepening the pathology knowledge and supporting the in vivo analysis of CAV.

2.
Comput Biol Med ; 147: 105753, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35797890

RESUMO

BACKGROUND: Restenosis following percutaneous transluminal angioplasty (PTA) in femoral arteries is a major cause of failure of the revascularization procedure. The arterial wall response to PTA is driven by multifactorial, multiscale processes, whose complete understanding is lacking. Multiscale agent-based modeling frameworks, simulating the network of mechanobiological events at cell-tissue scale, can contribute to decipher the pathological pathways of restenosis. In this context, the present study proposes a fully-automated multiscale agent-based modeling framework simulating the arterial wall remodeling due to the wall damage provoked by PTA and to the altered hemodynamics in the post-operative months. METHODS: The framework, applied to an idealized femoral artery model, integrated: (i) a PTA module (i.e., structural mechanics simulation), computing the post-PTA arterial morphology and the PTA-induced damage (ii) a hemodynamics module (i.e., computational fluid dynamics simulations), quantifying the near-wall hemodynamics, and (iii) a tissue remodeling module simulating cellular activities through an agent-based model. RESULTS: The framework was able to capture relevant features of the 3-month arterial wall response to PTA, namely (i) the impact of the PTA-induced damage and altered hemodynamics on arterial wall remodeling, including the local intimal growth at the most susceptible regions (i.e., elevated damage levels and low wall shear stress), (ii) the lumen area temporal trend resulting from the interaction of the two inputs, and (iii) a 3-month lumen area restenosis of ∼25%, in accordance with clinical evidence. CONCLUSIONS: The overall results demonstrated the framework potentiality in capturing mechanobiological processes underlying restenosis, thus fostering future application to patient-specific scenarios.


Assuntos
Angioplastia com Balão , Angioplastia , Constrição Patológica , Artéria Femoral/cirurgia , Hemodinâmica , Humanos , Análise de Sistemas , Resultado do Tratamento
3.
J R Soc Interface ; 19(188): 20210871, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35350882

RESUMO

In-stent restenosis (ISR) is a maladaptive inflammatory-driven response of femoral arteries to percutaneous transluminal angioplasty and stent deployment, leading to lumen re-narrowing as consequence of excessive cellular proliferative and synthetic activities. A thorough understanding of the underlying mechanobiological factors contributing to ISR is still lacking. Computational multiscale models integrating both continuous- and agent-based approaches have been identified as promising tools to capture key aspects of the complex network of events encompassing molecular, cellular and tissue response to the intervention. In this regard, this work presents a multiscale framework integrating the effects of local haemodynamics and monocyte gene expression data on cellular dynamics to simulate ISR mechanobiological processes in a patient-specific model of stented superficial femoral artery. The framework is based on the coupling of computational fluid dynamics simulations (haemodynamics module) with an agent-based model (ABM) of cellular activities (tissue remodelling module). Sensitivity analysis and surrogate modelling combined with genetic algorithm optimization were adopted to explore the model behaviour and calibrate the ABM parameters. The proposed framework successfully described the patient lumen area reduction from baseline to one-month follow-up, demonstrating the potential capabilities of this approach in predicting the short-term arterial response to the endovascular procedure.


Assuntos
Reestenose Coronária , Artéria Femoral , Constrição Patológica , Expressão Gênica , Hemodinâmica , Humanos
4.
J Nucl Med ; 63(7): 1039-1045, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34711616

RESUMO

223Ra is an α-emitter approved for the treatment of bone metastatic prostate cancer (PCa), which exerts direct cytotoxicity toward PCa cells near the bone interface, whereas cells positioned in the core respond poorly because of short α-particle penetrance. ß1 integrin (ß1I) interference has been shown to increase radiosensitivity and significantly enhance external-beam radiation efficiency. We hypothesized that targeting ß1I would improve 223Ra outcome. Methods: We tested the effect of combining 223Ra and anti-ß1I antibody treatment in PC3 and C4-2B PCa cell models expressing high and low ß1I levels, respectively. In vivo tumor growth was evaluated through bioluminescence. Cellular and molecular determinants of response were analyzed by ex vivo 3-dimensional imaging of bone lesions and by proteomic analysis and were further confirmed by computational modeling and in vitro functional analysis in tissue-engineered bone mimetic systems. Results: Interference with ß1I combined with 223Ra reduced PC3 cell growth in bone and significantly improved overall mouse survival, whereas no change was achieved in C4-2B tumors. Anti-ß1I treatment decreased the PC3 tumor cell mitosis index and spatially expanded 223Ra lethal effects 2-fold, in vivo and in silico. Regression was paralleled by decreased expression of radioresistance mediators. Conclusion: Targeting ß1I significantly improves 223Ra outcome and points toward combinatorial application in PCa tumors with high ß1I expression.


Assuntos
Neoplasias Ósseas , Integrinas , Neoplasias da Próstata , Animais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Humanos , Integrina beta1/metabolismo , Integrinas/antagonistas & inibidores , Masculino , Camundongos , Neoplasias da Próstata/patologia , Proteômica , Resultado do Tratamento
5.
Front Bioeng Biotechnol ; 9: 744560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796166

RESUMO

The widespread incidence of cardiovascular diseases and associated mortality and morbidity, along with the advent of powerful computational resources, have fostered an extensive research in computational modeling of vascular pathophysiology field and promoted in-silico models as a support for biomedical research. Given the multiscale nature of biological systems, the integration of phenomena at different spatial and temporal scales has emerged to be essential in capturing mechanobiological mechanisms underlying vascular adaptation processes. In this regard, agent-based models have demonstrated to successfully embed the systems biology principles and capture the emergent behavior of cellular systems under different pathophysiological conditions. Furthermore, through their modular structure, agent-based models are suitable to be integrated with continuum-based models within a multiscale framework that can link the molecular pathways to the cell and tissue levels. This can allow improving existing therapies and/or developing new therapeutic strategies. The present review examines the multiscale computational frameworks of vascular adaptation with an emphasis on the integration of agent-based approaches with continuum models to describe vascular pathophysiology in a systems biology perspective. The state-of-the-art highlights the current gaps and limitations in the field, thus shedding light on new areas to be explored that may become the future research focus. The inclusion of molecular intracellular pathways (e.g., genomics or proteomics) within the multiscale agent-based modeling frameworks will certainly provide a great contribution to the promising personalized medicine. Efforts will be also needed to address the challenges encountered for the verification, uncertainty quantification, calibration and validation of these multiscale frameworks.

6.
Ann Biomed Eng ; 49(9): 2349-2364, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33928465

RESUMO

In-stent restenosis (ISR) represents a major drawback of stented superficial femoral arteries (SFAs). Motivated by the high incidence and limited knowledge of ISR onset and development in human SFAs, this study aims to (i) analyze the lumen remodeling trajectory over 1-year follow-up period in human stented SFAs and (ii) investigate the impact of altered hemodynamics on ISR initiation and progression. Ten SFA lesions were reconstructed at four follow-ups from computed tomography to quantify the lumen area change occurring within 1-year post-intervention. Patient-specific computational fluid dynamics simulations were performed at each follow-up to relate wall shear stress (WSS) based descriptors with lumen remodeling. The largest lumen remodeling was found in the first post-operative month, with slight regional-specific differences (larger inward remodeling in the fringe segments, p < 0.05). Focal re-narrowing frequently occurred after 6 months. Slight differences in the lumen area change emerged between long and short stents, and between segments upstream and downstream from stent overlapping portions, at specific time intervals. Abnormal patterns of multidirectional WSS were associated with lumen remodeling within 1-year post-intervention. This longitudinal study gave important insights into the dynamics of ISR and the impact of hemodynamics on ISR progression in human SFAs.


Assuntos
Constrição Patológica/fisiopatologia , Artéria Femoral/patologia , Artéria Femoral/fisiopatologia , Stents/efeitos adversos , Idoso , Hemodinâmica , Humanos , Hidrodinâmica , Masculino , Pessoa de Meia-Idade , Modelagem Computacional Específica para o Paciente
7.
Sci Rep ; 11(1): 1613, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452294

RESUMO

In-stent restenosis (ISR) is the major drawback of superficial femoral artery (SFA) stenting. Abnormal hemodynamics after stent implantation seems to promote the development of ISR. Accordingly, this study aims to investigate the impact of local hemodynamics on lumen remodeling in human stented SFA lesions. Ten SFA models were reconstructed at 1-week and 1-year follow-up from computed tomography images. Patient-specific computational fluid dynamics simulations were performed to relate the local hemodynamics at 1-week, expressed in terms of time-averaged wall shear stress (TAWSS), oscillatory shear index and relative residence time, with the lumen remodeling at 1-year, quantified as the change of lumen area between 1-week and 1-year. The TAWSS was negatively associated with the lumen area change (ρ = - 0.75, p = 0.013). The surface area exposed to low TAWSS was positively correlated with the lumen area change (ρ = 0.69, p = 0.026). No significant correlations were present between the other hemodynamic descriptors and lumen area change. The low TAWSS was the best predictive marker of lumen remodeling (positive predictive value of 44.8%). Moreover, stent length and overlapping were predictor of ISR at follow-up. Despite the limited number of analyzed lesions, the overall findings suggest an association between abnormal patterns of WSS after stenting and lumen remodeling.


Assuntos
Remodelamento Atrial , Artéria Femoral/fisiologia , Hemodinâmica , Doença Arterial Periférica/cirurgia , Stents , Idoso , Simulação por Computador , Constrição Patológica/cirurgia , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/cirurgia , Seguimentos , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Resistência ao Cisalhamento , Análise Espacial , Stents/efeitos adversos , Fatores de Tempo , Tomografia Computadorizada por Raios X
8.
Am J Transplant ; 21(6): 2231-2239, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33394565

RESUMO

Progress in deceased donor intervention research has been limited. Development of an in silico model of deceased donor physiology may elucidate potential therapeutic targets and provide an efficient mechanism for testing proposed deceased donor interventions. In this study, we report a preliminary in silico model of deceased kidney donor injury built, calibrated, and validated based on data from published animal and human studies. We demonstrate that the in silico model behaves like animal studies of brain death pathophysiology with respect to upstream markers of renal injury including hemodynamics, oxygenation, cytokines expression, and inflammation. Therapeutic hypothermia, a deceased donor intervention studied in human trials, is performed to demonstrate the model's ability to mimic an established clinical trial. Finally, future directions for developing this concept into a functional, clinically applicable model are discussed.


Assuntos
Transplante de Rim , Obtenção de Tecidos e Órgãos , Animais , Morte Encefálica , Simulação por Computador , Humanos , Doadores de Tecidos
9.
Front Bioeng Biotechnol ; 9: 797555, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145962

RESUMO

The Foreign body response (FBR) is a major unresolved challenge that compromises medical implant integration and function by inflammation and fibrotic encapsulation. Mice implanted with polymeric scaffolds coupled to intravital non-linear multiphoton microscopy acquisition enable multiparametric, longitudinal investigation of the FBR evolution and interference strategies. However, follow-up analyses based on visual localization and manual segmentation are extremely time-consuming, subject to human error, and do not allow for automated parameter extraction. We developed an integrated computational pipeline based on an innovative and versatile variant of the U-Net neural network to segment and quantify cellular and extracellular structures of interest, which is maintained across different objectives without impairing accuracy. This software for automatically detecting the elements of the FBR shows promise to unravel the complexity of this pathophysiological process.

10.
BMC Cancer ; 20(1): 605, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32600282

RESUMO

BACKGROUND: Bone metastasis is the most frequent complication in prostate cancer patients and associated outcome remains fatal. Radium223 (Rad223), a bone targeting radioisotope improves overall survival in patients (3.6 months vs. placebo). However, clinical response is often followed by relapse and disease progression, and associated mechanisms of efficacy and resistance are poorly understood. Research efforts to overcome this gap require a substantial investment of time and resources. Computational models, integrated with experimental data, can overcome this limitation and drive research in a more effective fashion. METHODS: Accordingly, we developed a predictive agent-based model of prostate cancer bone metastasis progression and response to Rad223 as an agile platform to maximize its efficacy. The driving coefficients were calibrated on ad hoc experimental observations retrieved from intravital microscopy and the outcome further validated, in vivo. RESULTS: In this work we offered a detailed description of our data-integrated computational infrastructure, tested its accuracy and robustness, quantified the uncertainty of its driving coefficients, and showed the role of tumor size and distance from bone on Rad223 efficacy. In silico tumor growth, which is strongly driven by its mitotic character as identified by sensitivity analysis, matched in vivo trend with 98.3% confidence. Tumor size determined efficacy of Rad223, with larger lesions insensitive to therapy, while medium- and micro-sized tumors displayed up to 5.02 and 152.28-fold size decrease compared to control-treated tumors, respectively. Eradication events occurred in 65 ± 2% of cases in micro-tumors only. In addition, Rad223 lost any therapeutic effect, also on micro-tumors, for distances bigger than 400 µm from the bone interface. CONCLUSIONS: This model has the potential to be further developed to test additional bone targeting agents such as other radiopharmaceuticals or bisphosphonates.


Assuntos
Neoplasias Ósseas/radioterapia , Braquiterapia/métodos , Modelos Biológicos , Neoplasias da Próstata/patologia , Rádio (Elemento)/administração & dosagem , Animais , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Simulação por Computador , Progressão da Doença , Humanos , Microscopia Intravital , Masculino , Camundongos , Microscopia de Fluorescência , Neoplasias da Próstata/radioterapia , Tolerância a Radiação , Tíbia/diagnóstico por imagem , Tíbia/patologia , Tíbia/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Comput Biol Med ; 118: 103623, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31999550

RESUMO

BACKGROUND: Peripheral Artery Disease (PAD) is an atherosclerotic disorder that leads to impaired lumen patency through intimal hyperplasia and the build-up of plaques, mainly localized in areas of disturbed flow. Computational models can provide valuable insights in the pathogenesis of atherosclerosis and act as a predictive tool to optimize current interventional techniques. Our hypothesis is that a reliable predictive model must include the atherosclerosis development history. Accordingly, we developed a multiscale modeling framework of atherosclerosis that replicates the hemodynamic-driven arterial wall remodeling and plaque formation. METHODS: The framework was based on the coupling of Computational Fluid Dynamics (CFD) simulations with an Agent-Based Model (ABM). The CFD simulation computed the hemodynamics in a 3D artery model, while 2D ABMs simulated cell, Extracellular Matrix (ECM) and lipid dynamics in multiple vessel cross-sections. A sensitivity analysis was also performed to evaluate the oscillation of the ABM output to variations in the inputs and to identify the most influencing ABM parameters. RESULTS: Our multiscale model qualitatively replicated both the physiologic and pathologic arterial configuration, capturing histological-like features. The ABM outputs were mostly driven by cell and ECM dynamics, largely affecting the lumen area. A subset of parameters was found to affect the final lipid core size, without influencing cell/ECM or lumen area trends. CONCLUSION: The fully coupled CFD-ABM framework described atherosclerotic morphological and compositional changes triggered by a disturbed hemodynamics.


Assuntos
Aterosclerose , Placa Aterosclerótica , Simulação por Computador , Hemodinâmica , Humanos , Hidrodinâmica , Modelos Cardiovasculares , Estresse Mecânico
12.
J Natl Cancer Inst ; 111(10): 1042-1050, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657953

RESUMO

BACKGROUND: Bone-targeting radiotherapy with Radium-223 (Rad-223), a radioisotope emitting genotoxic alpha-radiation with limited tissue penetrance (∼100 µm), prolongs the survival of patients with metastatic prostate cancer (PCa). Confoundingly, the clinical response to Rad-223 is often followed by detrimental relapse and progression, and whether Rad-223 causes tumor-cell directed cytotoxicity in vivo remains unclear. We hypothesized that limited radiation penetrance in situ defines outcome. METHODS: We tested Rad-223 overall response by PC3 and C4-2B human PCa cell lines in mouse bones (n = 5-18 tibiae per group). Rad-223 efficacy at subcellular resolution was determined by intravital microscopy analysis of dual-color fluorescent PC3 cells (n = 3-4 mice per group) in tissue-engineered bone constructs. In vivo data were fed into an in silico model to predict Rad-223 effectiveness in lesions of different sizes (1-27, 306 initial cells; n = 10-100 simulations) and the predictions validated in vivo by treating PCa tumors of varying sizes in bones (n = 10-14 tibiae per group). Statistical tests were performed by two-sided Student t test or by one-way ANOVA followed by Tukey's post-hoc test. RESULTS: Rad-223 (385 kBq/kg) delayed the growth (means [SD]; comparison with control-treated mice) of PC3 (6.7 × 105[4.2 × 105] vs 2.8 × 106 [2.2 × 106], P = .01) and C4-2B tumors in bone (7.7 × 105 [4.0 × 105] vs 3.5 × 106 [1.3 × 106], P < .001). Cancer cell lethality in response to Rad-223 (385 kBq/kg) was profound but zonally confined along the bone interface compared with the more distant tumor core, which remained unperturbed (day 4; 13.1 [2.3%] apoptotic cells, 0-100 µm distance from bone vs 3.6 [0.2%], >300 µm distance; P = .01).In silico simulations predicted greater efficacy of Rad-223 on single-cell lesions (eradication rate: 88.0%) and minimal effects on larger tumors (no eradication, 16.2% growth reduction in tumors of 27 306 cells), as further confirmed in vivo for PC3 and C4-2B tumors. CONCLUSIONS: Micro-tumors showed severe growth delay or eradication in response to Rad-223, whereas macro-tumors persisted and expanded. The relative inefficacy in controlling large tumors points to application of Rad-223 in secondary prevention of early bone-metastatic disease and regimens co-targeting the tumor core.


Assuntos
Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Rádio (Elemento)/efeitos adversos , Animais , Neoplasias Ósseas/diagnóstico , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Humanos , Masculino , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Rádio (Elemento)/uso terapêutico , Carga Tumoral/efeitos da radiação , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biomech Model Mechanobiol ; 18(1): 29-44, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30094656

RESUMO

Peripheral arterial occlusive disease is a chronic pathology affecting at least 8-12 million people in the USA, typically treated with a vein graft bypass or through the deployment of a stent in order to restore the physiological circulation. Failure of peripheral endovascular interventions occurs at the intersection of vascular biology, biomechanics, and clinical decision making. It is our hypothesis that the majority of endovascular treatment approaches share the same driving mechanisms and that a deep understanding of the adaptation process is pivotal in order to improve the current outcome of the procedure. The postsurgical adaptation of vein graft bypasses offers the perfect example of how the balance between intimal hyperplasia and wall remodeling determines the failure or the success of the intervention. Accordingly, this work presents a versatile computational model able to capture the feedback loop that describes the interaction between events at cellular/tissue level and mechano-environmental conditions. The work here presented is a generalization and an improvement of a previous work by our group of investigators, where an agent-based model uses a cellular automata principle on a fixed hexagonal grid to reproduce the leading events of the graft's restenosis. The new hybrid model here presented allows a more realistic simulation both of the biological laws that drive the cellular behavior and of the active role of the membranes that separate the various layers of the vein. The novel feature is to use an immersed boundary implementation of a highly viscous flow to represent SMC motility and matrix reorganization in response to graft adaptation. Our implementation is modular, and this makes us able to choose the right compromise between closeness to the physiological reality and complexity of the model. The focus of this paper is to offer a new modular implementation that combines the best features of an agent-based model, continuum mechanics, and particle-tracking methods to cope with the multiscale nature of the adaptation phenomena. This hybrid method allows us to quickly test various hypotheses with a particular attention to cellular motility, a process that we demonstrated should be driven by mechanical homeostasis in order to maintain the right balance between cells and extracellular matrix in order to reproduce a distribution similar to histological experimental data from vein grafts.


Assuntos
Adaptação Fisiológica , Modelos Biológicos , Análise de Sistemas , Veias/fisiologia , Algoritmos , Prótese Vascular , Simulação por Computador , Hemodinâmica/fisiologia , Hiperplasia , Reprodutibilidade dos Testes , Veias/anatomia & histologia
14.
J Comput Sci ; 29: 59-69, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30931048

RESUMO

Several computational models of Vein Graft Bypass (VGB) adaptation have been developed in order to improve the surgical outcome and they all share a common property: their accuracy relies on a winning choice of their driving coefficients which are best to be retrieved from experimental data. Since experiments are time-consuming and resources-demanding, the golden standard is to know in advance which measures need to be retrieved on the experimental table and out of how many samples. Accordingly, our goal is to build a computational framework able to pre-design an effective experimental structure to optimize the computational models setup. Our hypothesis is that an Agent-Based Model (ABM) developed by our group is comparable enough to a true set of experiments to be used to generate reliable virtual experimental data. Thanks to a twofold usage of our ABM, we created a filter to be posed before the real experiment in order to drive its optimal design. This work is the natural continuation of a previous study from our group [1], where the attention was posed on simple single-cellular events models. With this new version we focused on more complex models with the purpose of verifying that the complexity of the experimental setup grows proportionally with the accuracy of the model itself.

15.
Comput Sci ICCS ; 10860: 352-362, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31032487

RESUMO

Several computational models have been developed in order to improve the outcome of Vein Graft Bypasses in response to arterial occlusions and they all share a common property: their accuracy relies on a winning choice of the coefficients' value related to biological functions that drive them. Our goal is to optimize the retrieval of these unknown coefficients on the base of experimental data and accordingly, as biological experiments are noisy in terms of statistical analysis and the models are typically stochastic and complex, this work wants first to elucidate which experimental measurements might be sufficient to retrieve the targeted coefficients and second how many specimens would constitute a good dataset to guarantee a sufficient level of accuracy. Since experiments are often costly and time consuming, the planning stage is critical to the success of the operation and, on the base of this consideration, the present work shows how, thanks to an ad hoc use of a computational model of vascular adaptation, it is possible to estimate in advance the entity and the quantity of resources needed in order to efficiently reproduce the experimental reality.

16.
PLoS One ; 12(11): e0187606, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190638

RESUMO

Reductionist approaches, where individual pieces of a process are examined in isolation, have been the mainstay of biomedical research. While these methods are effective in highly compartmentalized systems, they fail to account for the inherent plasticity and non-linearity within the signaling structure. In the current manuscript, we present the computational architecture for tracking an acute perturbation in a biologic system through a multiscale model that links gene dynamics to cell kinetics, with the overall goal of predicting tissue adaptation. Given the complexity of the genome, the problem is made tractable by clustering temporal changes in gene expression into unique patterns. These cluster elements form the core of an integrated network that serves as the driving force for the response of the biologic system. This modeling approach is illustrated using the clinical scenario of vein bypass graft adaptation. Vein segments placed in the arterial circulation for treatment of advanced occlusive disease can develop an aggressive hyperplastic response that narrows the lumen, reduces blood flow, and induces in situ thrombosis. Reducing this hyperplastic response has been a long-standing but unrealized goal of biologic researchers in the field. With repeated failures of single target therapies, the redundant response pathways are thought to be a fundamental issue preventing progress towards a solution. Using the current framework, we demonstrate how theoretical genomic manipulations can be introduced into the system to shift the adaptation to a more beneficial phenotype, where the hyperplastic response is mitigated and the risk of thrombosis reduced. Utilizing our previously published rabbit vein graft genomic data, where grafts were harvested at time points ranging from 2 hours to 28 days and under differential flow conditions, and a customized clustering algorithm, five gene clusters that differentiated the low flow (i.e., pro-hyperplastic) from high flow (i.e., anti-hyperplastic) response were identified. The current analysis advances these general associations to create a model that identifies those genes sets most likely to be of therapeutic benefit. Using this approach, we examine the range of potential opportunities for intervention via gene cluster over-expression or inhibition, delivered in isolation or combination, at the time of vein graft implantation.


Assuntos
Prótese Vascular , Hiperplasia/genética , Modelos Biológicos , Músculo Liso Vascular/patologia , Doenças Vasculares/genética , Humanos
17.
J Theor Biol ; 429: 149-163, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28645858

RESUMO

Myocardial infarction is the global leading cause of mortality (Go et al., 2014). Coronary artery occlusion is its main etiology and it is commonly treated by Coronary Artery Bypass Graft (CABG) surgery (Wilson et al, 2007). The long-term outcome remains unsatisfactory (Benedetto, 2016) as the graft faces the phenomenon of restenosis during the post-surgery, which consists of re-occlusion of the lumen and usually requires secondary intervention even within one year after the initial surgery (Harskamp, 2013). In this work, we propose an extensive study of the restenosis phenomenon by implementing two mathematical models previously developed by our group: a heuristic Dynamical System (DS) (Garbey and Berceli, 2013), and a stochastic Agent Based Model (ABM) (Garbey et al., 2015). With an extensive use of the ABM, we retrieved the pattern formations of the cellular events that mainly lead the restenosis, especially focusing on mitosis in intima, caused by alteration in shear stress, and mitosis in media, fostered by alteration in wall tension. A deep understanding of the elements at the base of the restenosis is indeed crucial in order to improve the final outcome of vein graft bypass. We also turned the ABM closer to the physiological reality by abating its original assumption of circumferential symmetry. This allowed us to finely replicate the trigger event of the restenosis, i.e. the loss of the endothelium in the early stage of the post-surgical follow up (Roubos et al., 1995) and to simulate the encroachment of the lumen in a fashion aligned with histological evidences (Owens et al., 2015). Finally, we cross-validated the two models by creating an accurate matching procedure. In this way we added the degree of accuracy given by the ABM to a simplified model (DS) that can serve as powerful predictive tool for the clinic.


Assuntos
Reestenose Coronária/etiologia , Modelos Teóricos , Endotélio Vascular/metabolismo , Heurística , Humanos , Modelos Cardiovasculares , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA