Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 35(29): 3854-3865, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-26657151

RESUMO

Most of the anaplastic large-cell lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK (nucleophosmin-anaplastic lymphoma kinase). NPM-ALK-deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines, NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive because of heterodimerization with NPM1. Thus, about 50% of the NPM-ALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or relocalization of NPM-ALK to the cytoplasm by NPM genetic knockout or knockdown caused ERK1/2 (extracellular signal-regulated protein kinases 1 and 2) increased phosphorylation and cell death through the engagement of an ATM/Chk2- and γH2AX (phosphorylated H2A histone family member X)-mediated DNA-damage response. Remarkably, human NPM-ALK-amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A 'drug holiday' where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification.


Assuntos
Apoptose , Linfoma Anaplásico de Células Grandes/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Crizotinibe , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Histonas/metabolismo , Humanos , Hidrazinas/farmacologia , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Microscopia Confocal , Nucleofosmina , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Pirazóis/farmacologia , Piridinas/farmacologia , Interferência de RNA , Transplante Heterólogo , Triazóis/farmacologia
2.
BMC Genomics ; 11: 109, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20152027

RESUMO

UNLABELLED: The version of this article published in BMC Genomics 2009, 10:558, contains data in Table 1 which are now known to be unreliable, and an illustration, in Figure 1, of unusual miRNA processing events predicted by these unreliable data. In this full-length correction, new data replace those found to be unreliable, leading to a more straightforward interpretation without altering the principle conclusions of the study. Table 1 and associated methods have been corrected, Figure 1 deleted, supplementary file 1 added, and modifications made to the sections "Deep sequencing of small RNAs from grapevine leaf tissue" and "Microarray analysis of miRNA expression". The editors and authors regret the inconvenience caused to readers by premature publication of the original paper. BACKGROUND: MicroRNAs are short (~21 base) single stranded RNAs that, in plants, are generally coded by specific genes and cleaved specifically from hairpin precursors. MicroRNAs are critical for the regulation of multiple developmental, stress related and other physiological processes in plants. The recent annotation of the genome of the grapevine (Vitis vinifera L.) allowed the identification of many putative conserved microRNA precursors, grouped into multiple gene families. RESULTS: Here we use oligonucleotide arrays to provide the first indication that many of these microRNAs show differential expression patterns between tissues and during the maturation of fruit in the grapevine. Furthermore we demonstrate that whole transcriptome sequencing and deep-sequencing of small RNA fractions can be used both to identify which microRNA precursors are expressed in different tissues and to estimate genomic coordinates and patterns of splicing and alternative splicing for many primary miRNA transcripts. CONCLUSIONS: Our results show that many microRNAs are differentially expressed in different tissues and during fruit maturation in the grapevine. Furthermore, the demonstration that whole transcriptome sequencing can be used to identify candidate splicing events and approximate primary microRNA transcript coordinates represents a significant step towards the large-scale elucidation of mechanisms regulating the expression of microRNAs at the transcriptional and post-transcriptional levels.


Assuntos
MicroRNAs/genética , Splicing de RNA , Vitis/genética , RNA de Plantas/genética , Análise de Sequência de RNA
3.
BMC Genomics ; 10: 558, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19939267

RESUMO

BACKGROUND: MicroRNAs are short (approximately 21 base) single stranded RNAs that, in plants, are generally coded by specific genes and cleaved specifically from hairpin precursors. MicroRNAs are critical for the regulation of multiple developmental, stress related and other physiological processes in plants. The recent annotation of the genome of the grapevine (Vitis vinifera L.) allowed the identification of many putative conserved microRNA precursors, grouped into multiple gene families. RESULTS: Here we use oligonucleotide arrays to provide the first indication that many of these microRNAs show differential expression patterns between tissues and during the maturation of fruit in the grapevine. Furthermore we demonstrate that whole transcriptome sequencing and deep-sequencing of small RNA fractions can be used both to identify which microRNA precursors are expressed in different tissues and to estimate genomic coordinates and patterns of splicing and alternative splicing for many primary miRNA transcripts. CONCLUSION: Our results show that many microRNAs are differentially expressed in different tissues and during fruit maturation in the grapevine. Furthermore, the demonstration that whole transcriptome sequencing can be used to identify candidate splicing events and approximate primary microRNA transcript coordinates represents a significant step towards the large-scale elucidation of mechanisms regulating the expression of microRNAs at the transcriptional and post-transcriptional levels.


Assuntos
MicroRNAs/genética , Análise de Sequência de RNA , Vitis/genética , Processamento Alternativo , Sequência de Bases , Biologia Computacional , Frutas/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Splicing de RNA , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...