Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ann Bot ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953500

RESUMO

Regulated cell death (RCD) plays key roles during essential processes along the plant life cycle. It takes part of specific developmental programs and maintains the organism homeostasis in response to unfavourable environments. Bryophytes could provide with valuable models to study developmental RCD processes as well as those triggered by biotic and abiotic stresses. Some pathways analogous to the ones present in angiosperms occur in the gametophytic haploid generation of bryophytes, allowing direct genetic studies. In this review, we focus on such RCD programs, identifying core conserved mechanisms and raising new key questions to analyse RCD from an evolutionary perspective.

2.
J Exp Bot ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989813

RESUMO

In the current context of global warming, high temperature events are becoming more frequent and intense in many places around the world. In this context, understanding how plants sense and respond to heat is essential to develop new tools to prevent plant damage and address global food security, as high temperature events are threatening agricultural sustainability. This review summarizes and integrates our current understanding underlying the cellular, physiological, biochemical and molecular regulatory pathways triggered in plants under moderately high and extremely high temperature conditions. Given that extremely high temperatures can also trigger ferroptosis, the study of this cell death mechanism constitutes a strategic approach to understand how plants might overcome otherwise lethal temperature events.

3.
J Exp Bot ; 72(6): 2125-2135, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32918080

RESUMO

Regulated cell death plays key roles during essential processes throughout the plant life cycle. It takes part in specific developmental programs and maintains homeostasis of the organism in response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent cell death pathway characterized by the accumulation of lipid reactive oxygen species. In plants, ferroptosis shares all the main hallmarks described in other systems. Those specific features include biochemical and morphological signatures that seem to be conserved among species. However, plant cells have specific metabolic pathways and a high degree of metabolic compartmentalization. Together with their particular morphology, these features add more complexity to the plant ferroptosis pathway. In this review, we summarize the most recent advances in elucidating the roles of ferroptosis in plants, focusing on specific triggers, the main players, and underlying pathways.


Assuntos
Ferroptose , Morte Celular , Ferro , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio
4.
Int J Dev Biol ; 65(4-5-6): 187-194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930346

RESUMO

The cytochrome P450 superfamily is a large enzymatic protein family that is widely distributed along diverse kingdoms. In plants, cytochrome P450 monooxygenases (CYPs) participate in a vast array of pathways leading to the synthesis and modification of multiple metabolites with variable and important functions during different stages of plant development. This includes the biosynthesis and degradation of a great assortment of compounds implicated in a variety of physiological responses, such as signaling and defense, organ patterning and the biosynthesis of structural polymers, among others. In this review, we summarize the characteristics of the different families of plant CYPs, focusing on the most recent advances in elucidating the roles of CYPs in plant growth and development and more specifically, during plant gametogenesis, fertilization and embryogenesis.


Assuntos
Sistema Enzimático do Citocromo P-450 , Plantas , Sistema Enzimático do Citocromo P-450/genética , Genes de Plantas , Desenvolvimento Vegetal , Plantas/enzimologia , Plantas/genética
5.
Plant Cell Environ ; 44(7): 2134-2149, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33058168

RESUMO

Sensing and response to high temperatures are crucial to prevent heat-related damage and to preserve cellular and metabolic functions. The response to heat stress is a complex and coordinated process that involves several subcellular compartments and multi-level regulatory networks that are synchronized to avoid cell damage while maintaining cellular homeostasis. In this review, we provide an insight into the most recent advances in elucidating the molecular mechanisms involved in heat stress sensing and response in Marchantia polymorpha. Based on the signaling pathways and genes that were identified in Marchantia, our analyses indicate that although with specific particularities, the core components of the heat stress response seem conserved in bryophytes and angiosperms. Liverworts not only constitute a powerful tool to study heat stress response and signaling pathways during plant evolution, but also provide key and simple mechanisms to cope with extreme temperatures. Given the increasing prevalence of high temperatures around the world as a result of global warming, this knowledge provides a new set of molecular tools with potential agronomical applications.


Assuntos
Resposta ao Choque Térmico/fisiologia , Marchantia/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Front Plant Sci ; 11: 599247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329663

RESUMO

In flowering plants, pollen tubes undergo a journey that starts in the stigma and ends in the ovule with the delivery of the sperm cells to achieve double fertilization. The pollen cell wall plays an essential role to accomplish all the steps required for the successful delivery of the male gametes. This extended path involves female tissue recognition, rapid hydration and germination, polar growth, and a tight regulation of cell wall synthesis and modification, as its properties change not only along the pollen tube but also in response to guidance cues inside the pistil. In this review, we focus on the most recent advances in elucidating the molecular mechanisms involved in the regulation of cell wall synthesis and modification during pollen germination, pollen tube growth, and rupture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...