Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 247(5): 1123-1132, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29380141

RESUMO

MAIN CONCLUSION: AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a concentric lamellar texture depending on the cutting angle. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S2 layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation.


Assuntos
Parede Celular/ultraestrutura , Madeira/ultraestrutura , Microscopia de Força Atômica/métodos , Picea/ultraestrutura , Madeira/citologia , Difração de Raios X
2.
ACS Appl Mater Interfaces ; 10(5): 5030-5037, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29373784

RESUMO

Today's materials research aims at excellent mechanical performance in combination with advanced functionality. In this regard, great progress has been made in tailoring the materials by assembly processes in bottom-up approaches. In the field of wood-derived materials, nanocellulose research has gained increasing attention, and materials with advanced properties were developed. However, there are still unresolved issues concerning upscaling for large-scale applications. Alternatively, the sophisticated hierarchical scaffold of wood can be utilized in a top-down approach to upscale functionalization, and one can profit at the same time from its renewable nature, CO2 storing capacity, light weight, and good mechanical performance. Nevertheless, for bulk wood materials, a wider multipurpose industrial use is so far impeded by concerns regarding durability, natural heterogeneity as well as limitations in terms of functionalization, processing, and shaping. Here, we present a novel cellulose bulk material concept based on delignification and densification of wood resulting in a high-performance material. A delignification process using hydrogen peroxide and acetic acid was optimized to delignify the entire bulk wooden blocks and to retain the highly beneficial structural directionality of wood. In a subsequent step, these cellulosic blocks were densified in a process combining compression and lateral shear to gain a very compact cellulosic material with entangled fibers while retaining unidirectional fiber orientation. The cellulose bulk materials obtained by different densification protocols were structurally, chemically, and mechanically characterized revealing superior tensile properties compared to native wood. Furthermore, after delignification, the cellulose bulk material can be easily formed into different shapes, and the delignification facilitates functionalization of the bioscaffold.

3.
Plant Methods ; 13: 60, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769995

RESUMO

BACKGROUND: Understanding the arrangement and mechanical properties of wood polymers within the plant cell wall is the basis for unravelling its underlying structure-property relationships. As state of the art Atomic Force Microscopy (AFM) has been used to visualize cell wall layers in contact resonance- and amplitude controlled mode (AC) on embedded samples. Most of the studies have focused on the structural arrangement of the S2 layer and its lamellar structure. RESULTS: In this work, a protocol for AFM is proposed to characterize the entire cell wall mechanically by quantitative imaging (QI™) at the nanometer level, without embedding the samples. It is shown that the applied protocol allows for distinguishing between the cell wall layers of the compound middle lamella, S1, and S2 of spruce wood based on their Young's Moduli. In the transition zone, S12, a stiffness gradient is measured. CONCLUSIONS: The QI™ mode pushes the limit of resolution for mechanical characterization of the plant cell wall to the nanometer range. Comparing QI™- against AC images reveals that the mode of operation strongly influences the visualization of the cell wall.

4.
J Colloid Interface Sci ; 500: 133-141, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28407597

RESUMO

Surface functionalization by means of controlled deposition of charged polymers or nanoparticles using the layer-by-layer (LbL) approach has been used to modify mostly engineered materials with well-defined surface chemistry and morphology. In this regard, natural and inhomogeneous interfaces have gained very little attention. Furthermore, natural substrates are susceptible to alterations by factors commonly used to control the growth of multilayers, such as pH, temperature and ionic strength. Here, we study the impact of sorption kinetics of a bilayer system (Poly(diallyldimethylammonium chloride) (PDDA) and Poly(sodium 4-styrenesulfonate) (PSS)) on a natural heterogeneous wood surface at neutral pH, without salt addition, on the multilayer buildup. To overcome analytical limitations we introduce a complementary approach based on UV reflectance spectroscopy, atomic force microscopy (AFM) and zeta potential measurements. Compared to immersion times used for ideal substrates, we found that a high surface coverage requires relatively long immersion, approximately 30min, into polyelectrolyte solutions, while a sufficient removal of polyelectrolyte excess during the washing step, requires even longer, about 100min. Based on these findings, we show that film growth can be controlled kinetically. Long immersion times provide well-defined and regular multilayers. The obtained data points to specific requirements to be considered when LbL treatments are applied to rough, porous and heterogeneous surfaces, and thereby sets a basis for a successful transfer of various surface functionalization approaches already shown on ideal surfaces.

5.
ACS Appl Mater Interfaces ; 9(15): 13793-13800, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28345851

RESUMO

The adhesion behavior of polyelectrolyte multilayers consisting of poly(diallyldimethylammonium chloride), PDDA, and poly(styrenesulfonate), PSS, toward a silicon AFM tip was studied during their build-up on wood, a chemically heterogeneous, micrometer rough biomaterial and compared with a nanometer rough substrate, namely quartz. The atomic force microscopy-based force mapping approach generated high-resolution topography-, and adhesion maps within the first bilayers, which point toward a homogeneous layer-by-layer build-up on the biomaterial surface, and therefore indicate an even charge distribution. By analyzing the force-distance curves in every pixel of the mapping, new insights into the specific interactions of the polyelectrolyte multilayers at the surface were achieved. The characteristic odd-even effect of polyelectrolyte multilayers cannot only be determined on quartz, but also on the biomaterial wood, however, only after an offset of two bilayers. This is potentially due to the specific roughness and charge of wood in comparison to commonly used quartz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA