Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 85: 102243, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788587

RESUMO

Signal transduction enables cells to sense and respond to chemical and mechanical information in the extracellular environment. Recently, phase separation has emerged as a physical mechanism that can influence the spatial organization of signaling molecules and regulate downstream signaling. Although many molecular components of signaling pathways, including receptors, kinases, and transcription factors, have been observed to undergo phase separation, understanding the functional consequences of their phase separation in signal transduction remains an ongoing area of research. In this review, we will discuss recent studies investigating how cells potentially use phase separation to regulate different signaling pathways by initiating signaling, amplifying signaling, or inhibiting signaling. We will also discuss recent observations that suggest a role for phase separation in mechanosensing in the Hippo pathway and at focal adhesions.


Assuntos
Mecanotransdução Celular , Transdução de Sinais , Via de Sinalização Hippo , Fatores de Transcrição/metabolismo
2.
Front Cell Dev Biol ; 11: 1274775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664465

RESUMO

[This corrects the article DOI: 10.3389/fcell.2022.932483.].

3.
WIREs Mech Dis ; 15(4): e1604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781396

RESUMO

Cell signaling is a fundamental cellular process that enables cells to sense and respond to information in their surroundings. At the molecular level, signaling is primarily carried out by transmembrane protein receptors that can initiate complex downstream signal transduction cascades to alter cellular behavior. In the human body, different cells can be exposed to a wide variety of environmental conditions, and cells express diverse classes of receptors capable of sensing and integrating different signals. Furthermore, different receptors and signaling pathways can crosstalk with each other to calibrate the cellular response. Crosstalk occurs through multiple mechanisms at different levels of signaling pathways. In this review, we discuss how cells sense and integrate different chemical, mechanical, and spatial signals as well as the mechanisms of crosstalk between pathways. To illustrate these concepts, we use a few well-studied signaling pathways, including receptor tyrosine kinases and integrin receptors. Finally, we discuss the implications of dysregulated cellular sensing on driving diseases such as cancer. This article is categorized under: Cancer > Molecular and Cellular Physiology Metabolic Diseases > Molecular and Cellular Physiology.


Assuntos
Receptores Proteína Tirosina Quinases , Transdução de Sinais , Humanos , Transdução de Sinais/fisiologia , Receptores Proteína Tirosina Quinases/metabolismo , Integrinas/metabolismo
4.
Front Cell Dev Biol ; 10: 932483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959492

RESUMO

Liquid-liquid phase separation driven by weak interactions between multivalent molecules contributes to the cellular organization by promoting the formation of biomolecular condensates. At membranes, phase separation can promote the assembly of transmembrane proteins with their cytoplasmic binding partners into micron-sized membrane-associated condensates. For example, phase separation promotes clustering of nephrin, a transmembrane adhesion molecule, resulting in increased Arp2/3 complex-dependent actin polymerization. In vitro reconstitution is a powerful approach to understand phase separation in biological systems. With a bottom-up approach, we can determine the molecules necessary and sufficient for phase separation, map the phase diagram by quantifying de-mixing over a range of molecular concentrations, assess the material properties of the condensed phase using fluorescence recovery after photobleaching (FRAP), and even determine how phase separation impacts downstream biochemical activity. Here, we describe a detailed protocol to reconstitute nephrin clusters on supported lipid bilayers with purified recombinant protein. We also describe how to measure Arp2/3 complex-dependent actin polymerization on bilayers using fluorescence microscopy. These different protocols can be performed independently or combined as needed. These general techniques can be applied to reconstitute and study phase-separated signaling clusters of many different receptors or to generally understand how actin polymerization is regulated at membranes.

5.
Nat Cell Biol ; 24(4): 404-405, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411084
6.
Elife ; 112022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35049497

RESUMO

Integrin adhesion complexes (IACs) are integrin-based plasma-membrane-associated compartments where cells sense environmental cues. The physical mechanisms and molecular interactions that mediate initial IAC formation are unclear. We found that both p130Cas ('Cas') and Focal adhesion kinase ('FAK') undergo liquid-liquid phase separation in vitro under physiologic conditions. Cas- and FAK- driven phase separation is sufficient to reconstitute kindlin-dependent integrin clustering in vitro with recombinant mammalian proteins. In vitro condensates and IACs in mouse embryonic fibroblasts (MEFs) exhibit similar sensitivities to environmental perturbations including changes in temperature and pH. Furthermore, mutations that inhibit or enhance phase separation in vitro reduce or increase the number of IACs in MEFs, respectively. Finally, we find that the Cas and FAK pathways act synergistically to promote phase separation, integrin clustering, IAC formation and partitioning of key components in vitro and in cells. We propose that Cas- and FAK-driven phase separation provides an intracellular trigger for integrin clustering and nascent IAC formation.


Assuntos
Moléculas de Adesão Celular/metabolismo , Adesão Celular , Fibroblastos/fisiologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Integrinas/metabolismo , Animais , Linhagem Celular , Proteína-Tirosina Quinases de Adesão Focal/genética , Integrinas/genética , Camundongos , Fosforilação , Células Sf9 , Transdução de Sinais
7.
Annu Rev Biophys ; 48: 465-494, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30951647

RESUMO

Cell surface transmembrane receptors often form nanometer- to micrometer-scale clusters to initiate signal transduction in response to environmental cues. Extracellular ligand oligomerization, domain-domain interactions, and binding to multivalent proteins all contribute to cluster formation. Here we review the current understanding of mechanisms driving cluster formation in a series of representative receptor systems: glycosylated receptors, immune receptors, cell adhesion receptors, Wnt receptors, and receptor tyrosine kinases. We suggest that these clusters share properties of systems that undergo liquid-liquid phase separation and could be investigated in this light.


Assuntos
Membrana Celular/metabolismo , Transdução de Sinais , Animais , Membrana Celular/química , Humanos , Ligantes , Polimerização , Receptores de Superfície Celular/metabolismo
8.
Science ; 363(6431): 1093-1097, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30846599

RESUMO

Biomolecular condensates concentrate macromolecules into foci without a surrounding membrane. Many condensates appear to form through multivalent interactions that drive liquid-liquid phase separation (LLPS). LLPS increases the specific activity of actin regulatory proteins toward actin assembly by the Arp2/3 complex. We show that this increase occurs because LLPS of the Nephrin-Nck-N-WASP signaling pathway on lipid bilayers increases membrane dwell time of N-WASP and Arp2/3 complex, consequently increasing actin assembly. Dwell time varies with relative stoichiometry of the signaling proteins in the phase-separated clusters, rendering N-WASP and Arp2/3 activity stoichiometry dependent. This mechanism of controlling protein activity is enabled by the stoichiometrically undefined nature of biomolecular condensates. Such regulation should be a general feature of signaling systems that assemble through multivalent interactions and drive nonequilibrium outputs.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Oncogênicas/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Linhagem Celular Tumoral , Humanos , Ligantes , Bicamadas Lipídicas , Transição de Fase , Ligação Proteica , Transdução de Sinais , Domínios de Homologia de src
9.
J Mol Biol ; 430(23): 4666-4684, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30099028

RESUMO

Biomolecular condensates are two- and three-dimensional compartments in eukaryotic cells that concentrate specific collections of molecules without an encapsulating membrane. Many condensates behave as dynamic liquids and appear to form through liquid-liquid phase separation driven by weak, multivalent interactions between macromolecules. In this review, we discuss current models and data regarding the control of condensate composition, and we describe our current understanding of the composition of representative condensates including PML nuclear bodies, P-bodies, stress granules, the nucleolus, and two-dimensional membrane localized LAT and nephrin clusters. Specific interactions, such as interactions between modular binding domains, weaker interactions between intrinsically disorder regions and nucleic acid base pairing, and nonspecific interactions, such as electrostatic interactions and hydrophobic interactions, influence condensate composition. Understanding how specific condensate composition is determined is essential to understanding condensates as biochemical entities and ultimately discerning their cellular and organismic functions.


Assuntos
Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Animais , Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Células Eucarióticas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Molecular , Organelas/química , Organelas/metabolismo , Proteína da Leucemia Promielocítica/química , Proteína da Leucemia Promielocítica/metabolismo
10.
Structure ; 25(2): 264-275, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28089450

RESUMO

Vinculin, a scaffolding protein that localizes to focal adhesions (FAs) and adherens junctions, links the actin cytoskeleton to the adhesive super-structure. While vinculin binds to a number of cytoskeletal proteins, it can also associate with phosphatidylinositol 4,5-bisphosphate (PIP2) to drive membrane association. To generate a structural model for PIP2-dependent interaction of vinculin with the lipid bilayer, we conducted lipid-association, nuclear magnetic resonance, and computational modeling experiments. We find that two basic patches on the vinculin tail drive membrane association: the basic collar specifically recognizes PIP2, while the basic ladder drives association with the lipid bilayer. Vinculin mutants with defects in PIP2-dependent liposome association were then expressed in vinculin knockout murine embryonic fibroblasts. Results from these analyses indicate that PIP2 binding is not required for localization of vinculin to FAs or FA strengthening, but is required for vinculin activation and turnover at FAs to promote its association with the force transduction FA nanodomain.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adesões Focais/metabolismo , Bicamadas Lipídicas/química , Fosfatidilinositol 4,5-Difosfato/química , Vinculina/química , Citoesqueleto de Actina/genética , Actinas/genética , Motivos de Aminoácidos , Animais , Sítios de Ligação , Embrião de Mamíferos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Adesões Focais/ultraestrutura , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Vinculina/genética , Vinculina/metabolismo
11.
Nat Cell Biol ; 17(8): 955-63, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26121555

RESUMO

During cell migration, the forces generated in the actin cytoskeleton are transmitted across transmembrane receptors to the extracellular matrix or other cells through a series of mechanosensitive, regulable protein-protein interactions termed the molecular clutch. In integrin-based focal adhesions, the proteins forming this linkage are organized into a conserved three-dimensional nano-architecture. Here we discuss how the physical interactions between the actin cytoskeleton and focal-adhesion-associated molecules mediate force transmission from the molecular clutch to the extracellular matrix.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adesão Celular , Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Mecanotransdução Celular , Animais , Humanos , Pressão , Fatores de Tempo
12.
Nat Cell Biol ; 17(7): 880-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26053221

RESUMO

Focal adhesions (FAs) link the extracellular matrix to the actin cytoskeleton to mediate cell adhesion, migration, mechanosensing and signalling. FAs have conserved nanoscale protein organization, suggesting that the position of proteins within FAs regulates their activity and function. Vinculin binds different FA proteins to mediate distinct cellular functions, but how vinculin's interactions are spatiotemporally organized within FAs is unknown. Using interferometric photoactivation localization super-resolution microscopy to assay vinculin nanoscale localization and a FRET biosensor to assay vinculin conformation, we found that upward repositioning within the FA during FA maturation facilitates vinculin activation and mechanical reinforcement of FAs. Inactive vinculin localizes to the lower integrin signalling layer in FAs by binding to phospho-paxillin. Talin binding activates vinculin and targets active vinculin higher in FAs where vinculin can engage retrograde actin flow. Thus, specific protein interactions are spatially segregated within FAs at the nanoscale to regulate vinculin activation and function.


Assuntos
Adesões Focais/metabolismo , Nanoestruturas , Nanotecnologia/métodos , Vinculina/metabolismo , Actinas/química , Actinas/metabolismo , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Adesões Focais/genética , Humanos , Integrinas/química , Integrinas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Modelos Moleculares , Mutação , Paxilina/química , Paxilina/genética , Paxilina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Talina/química , Talina/genética , Talina/metabolismo , Vinculina/química , Vinculina/genética
13.
Curr Biol ; 25(2): 175-186, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25544611

RESUMO

BACKGROUND: Cell migration requires coordinated formation of focal adhesions (FAs) and assembly and contraction of the actin cytoskeleton. Nonmuscle myosin II (MII) is a critical mediator of contractility and FA dynamics in cell migration. Signaling downstream of the small GTPase Rac1 also regulates FA and actin dynamics, but its role in regulation of MII during migration is less clear. RESULTS: We found that Rac1 promotes association of MIIA with FA. Live-cell imaging showed that, whereas most MIIA at the leading edge assembled into dorsal contractile arcs, a substantial subset assembled in or was captured within maturing FA, and this behavior was promoted by active Rac1. Protein kinase C (PKC) activation was necessary and sufficient for integrin- and Rac1-dependent phosphorylation of MIIA heavy chain (HC) on serine1916 (S1916) and recruitment to FA. S1916 phosphorylation of MIIA HC and localization in FA was enhanced during cell spreading and ECM stiffness mechanosensing, suggesting upregulation of this pathway during physiological Rac1 activation. Phosphomimic and nonphosphorylatable MIIA HC mutants demonstrated that S1916 phosphorylation was necessary and sufficient for the capture and assembly of MIIA minifilaments in FA. S1916 phosphorylation was also sufficient to promote the rapid assembly of FAs to enhance cell migration and for the modulation of traction force, spreading, and migration by ECM stiffness. CONCLUSIONS: Our study reveals for the first time that Rac1 and integrin activation regulates MIIA HC phosphorylation through a PKC-dependent mechanism that promotes MIIA association with FAs and acts as a critical modulator of cell migration and mechanosensing.


Assuntos
Movimento Celular , Adesões Focais/metabolismo , Proteínas Motores Moleculares/genética , Cadeias Pesadas de Miosina/genética , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Linhagem Celular , Humanos , Mecanotransdução Celular/fisiologia , Proteínas Motores Moleculares/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fosforilação , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
PLoS One ; 6(11): e26631, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22069459

RESUMO

At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These "adhesive F-actin waves" require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adesão Celular , Integrinas/metabolismo , Vinculina/metabolismo , Zixina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Paxilina/metabolismo , Talina/metabolismo
15.
Curr Biol ; 19(23): 2008-13, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19932026

RESUMO

Mitochondria are pleomorphic organelles that have central roles in cell physiology. Defects in their localization and dynamics lead to human disease. Myosins are actin-based motors that power processes such as muscle contraction, cytokinesis, and organelle transport. Here we report the initial characterization of myosin-XIX (Myo19), the founding member of a novel class of myosin that associates with mitochondria. The 970 aa heavy chain consists of a motor domain, three IQ motifs, and a short tail. Myo19 mRNA is expressed in multiple tissues, and antibodies to human Myo19 detect an approximately 109 kDa band in multiple cell lines. Both endogenous Myo19 and GFP-Myo19 exhibit striking localization to mitochondria. Deletion analysis reveals that the Myo19 tail is necessary and sufficient for mitochondrial localization. Expressing full-length GFP-Myo19 in A549 cells reveals a remarkable gain of function where the majority of the mitochondria move continuously. Moving mitochondria travel for many micrometers with an obvious leading end and distorted shape. The motility and shape change are sensitive to latrunculin B, indicating that both are actin dependent. Expressing the GFP-Myo19 tail in CAD cells resulted in decreased mitochondrial run lengths in neurites. These results suggest that this novel myosin functions as an actin-based motor for mitochondrial movement in vertebrate cells.


Assuntos
Mitocôndrias/metabolismo , Miosinas/genética , Miosinas/metabolismo , Actinas/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...