Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(13): 3692-3706, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029763

RESUMO

Recent studies highlight the potential of climate change refugia (CCR) to support the persistence of biodiversity in regions that may otherwise become unsuitable with climate change. However, a key challenge in using CCR for climate resilient management lies in how CCR may intersect with existing forest management strategies, and subsequently influence how landscapes buffer species from negative impacts of warming climate. We address this challenge in temperate coastal forests of the Pacific Northwestern United States, where declines in the extent of late-successional forests have prompted efforts to restore old-growth forest structure. One common approach for doing so involves selectively thinning forest stands to enhance structural complexity. However, dense canopy is a key forest feature moderating understory microclimate and potentially buffering organisms from climate change impacts, raising the possibility that approaches for managing forests for old-growth structure may reduce the extent and number of CCR. We used remotely sensed vegetation indices to identify CCR in an experimental forest with control and thinned (restoration) treatments, and explored the influence of biophysical variables on buffering capacity. We found that remotely sensed vegetation indices commonly used to identify CCR were associated with understory temperature and plant community composition, and thus captured aspects of landscape buffering that might instill climate resilience and be of interest to management. We then examined the interaction between current restoration strategies and CCR, and found that selective thinning for promoting old-growth structure had only very minor, if any, effects on climatic buffering. In all, our study demonstrates that forest management approaches aimed at restoring old-growth structure through targeted thinning do not greatly decrease buffering capacity, despite a known link between dense canopy and CCR. More broadly, this study illustrates the value of using remote sensing approaches to identify CCR, facilitating the integration of climate change adaptation with other forest management approaches.


Assuntos
Mudança Climática , Refúgio de Vida Selvagem , Florestas , Biodiversidade , Plantas , Árvores
2.
Proc Natl Acad Sci U S A ; 120(11): e2208120120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877837

RESUMO

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.


Assuntos
Incêndios , Traqueófitas , Incêndios Florestais , Clima , Mudança Climática
3.
PeerJ ; 9: e11802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34327059

RESUMO

The State of Washington, USA, has set a goal to reach net zero greenhouse gas emissions by 2050, the year around which the Intergovernmental Panel on Climate Change (IPCC) recommended we must limit global warming to 1.5 °C above that of pre-industrial times or face catastrophic changes. We employed existing approaches to calculate the potential for a suite of Natural Climate Solution (NCS) pathways to reduce Washington's net emissions under three implementation scenarios: Limited, Moderate, and Ambitious. We found that NCS could reduce emissions between 4.3 and 8.8 MMT CO2eyr-1 in thirty-one years, accounting for 4% to 9% of the State's net zero goal. These potential reductions largely rely on changing forest management practices on portions of private and public timber lands. We also mapped the distribution of each pathway's Ambitious potential emissions reductions by county, revealing spatial clustering of high potential reductions in three regions closely tied to major business sectors: private industrial forestry in southwestern coastal forests, cropland agriculture in the Columbia Basin, and urban and rural development in the Puget Trough. Overall, potential emissions reductions are provided largely by a single pathway, Extended Timber Harvest Rotations, which mostly clusters in southwestern counties. However, mapping distribution of each of the other pathways reveals wider distribution of each pathway's unique geographic relevance to support fair, just, and efficient deployment. Although the relative potential for a single pathway to contribute to statewide emissions reductions may be small, they could provide co-benefits to people, communities, economies, and nature for adaptation and resiliency across the state.

4.
PLoS One ; 13(10): e0205677, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379857

RESUMO

Climate change is affecting the growth, phenology, and distribution of species across northeastern United States. In response to these changes, some species have been adversely impacted while others have benefited. One species that has benefited from climate change, historically and in response to experimental treatments, is common ragweed (Ambrosia artemisiifolia), a widely distributed annual weed and a leading cause of hay fever in North America. To better understand how climate change may affect the distribution of common ragweed, we built a maximum entropy (Maxent) predictive model using climate and bioclimatic data and over 700 observations across the eastern U.S. Our model performed well with an AUC score of 0.765 using four uncorrelated variables, including precipitation seasonality, mean diurnal temperature range, August precipitation, and January maximum temperature. After building and testing our model, we then projected potential future common ragweed distribution using a suite of 13 global climate models (GCMs) under two future greenhouse gas scenarios for mid and late-century. In addition to providing georeferenced hot spots of potential future expansion, we also provide a metric of confidence by evaluating the number of GCMs that agree. We show a substantial contraction of common ragweed in central Florida, southern Appalachian Mountains, and northeastern Virginia and areas of potential expansion at the northern margins of its current distribution, notably in northeastern U.S. However, the vast majority of this increase is projected to occur by mid-century and may be moderated somewhat by the 2070s, implying that common ragweed may be sensitive to climatic variability. Although other factors and modeling approaches should be explored, we offer preliminary insight into where common ragweed might be a new concern in the future. Due to the health impacts of ragweed, local weed control boards may be well advised to monitor areas of expansion and potentially increase eradication efforts.


Assuntos
Ambrosia/crescimento & desenvolvimento , Mudança Climática , Modelos Biológicos , Rinite Alérgica Sazonal , Humanos , Estados Unidos , Controle de Plantas Daninhas
5.
Glob Chang Biol ; 23(5): 2005-2015, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27859937

RESUMO

Empirical and mechanistic models have both been used to assess the potential impacts of climate change on species distributions, and each modeling approach has its strengths and weaknesses. Here, we demonstrate an approach to projecting climate-driven changes in species distributions that draws on both empirical and mechanistic models. We combined projections from a dynamic global vegetation model (DGVM) that simulates the distributions of biomes based on basic plant functional types with projections from empirical climatic niche models for six tree species in northwestern North America. These integrated model outputs incorporate important biological processes, such as competition, physiological responses of plants to changes in atmospheric CO2 concentrations, and fire, as well as what are likely to be species-specific climatic constraints. We compared the integrated projections to projections from the empirical climatic niche models alone. Overall, our integrated model outputs projected a greater climate-driven loss of potentially suitable environmental space than did the empirical climatic niche model outputs alone for the majority of modeled species. Our results also show that refining species distributions with DGVM outputs had large effects on the geographic locations of suitable habitat. We demonstrate one approach to integrating the outputs of mechanistic and empirical niche models to produce bioclimatic projections. But perhaps more importantly, our study reveals the potential for empirical climatic niche models to over-predict suitable environmental space under future climatic conditions.


Assuntos
Mudança Climática , Ecossistema , Florestas , Clima , Modelos Biológicos , América do Norte , Árvores
6.
PLoS One ; 6(12): e28788, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174897

RESUMO

Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Mudança Climática/economia , Conservação dos Recursos Naturais/economia , Geografia , Noroeste dos Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...