Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(6): 1992-1997, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674675

RESUMO

Microarchitectural cues drive aligned fibrillar collagen deposition in vivo and in biomaterial scaffolds, but the cell-signaling events that underlie this process are not well understood. Utilizing a multicellular patterning model system that allows for observation of intracellular signaling events during collagen matrix assembly, we investigated the role of calcium (Ca2+) signaling in human mesenchymal stem cells (MSCs) during this process. We observed spontaneous Ca2+ oscillations in MSCs during fibrillar collagen assembly, and hypothesized that the transient receptor potential vanilloid 4 (TRPV4) ion channel, a mechanosensitive Ca2+-permeable channel, may regulate this signaling. Inhibition of TRPV4 nearly abolished Ca2+ signaling at initial stages of collagen matrix assembly, while at later times had reduced but significant effects. Importantly, blocking TRPV4 activity dramatically reduced aligned collagen fibril assembly; conversely, activating TRPV4 accelerated aligned collagen formation. TRPV4-dependent Ca2+ oscillations were found to be independent of pattern shape or subpattern cell location, suggesting this signaling mechanism is necessary for aligned collagen formation but not sufficient in the absence of physical (microarchitectural) cues that force multicellular alignment. As cell-generated mechanical forces are known to be critical to the matrix assembly process, we examined the role of TRPV4-mediated Ca2+ signaling in force generated across the load-bearing focal adhesion protein vinculin within MSCs using an FRET-based tension sensor. Inhibiting TRPV4 decreased tensile force across vinculin, whereas TRPV4 activation caused a dynamic unloading and reloading of vinculin. Together, these findings suggest TRPV4 activity regulates forces at cell-matrix adhesions and is critical to aligned collagen matrix assembly by MSCs.


Assuntos
Sinalização do Cálcio/fisiologia , Colágeno/biossíntese , Células-Tronco Mesenquimais/metabolismo , Canais de Cátion TRPV/metabolismo , Vinculina/metabolismo , Células da Medula Óssea , Cálcio , Junções Célula-Matriz/metabolismo , Microambiente Celular , Matriz Extracelular , Adesões Focais , Humanos
2.
Biomed Mater ; 12(2): 025005, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28145891

RESUMO

Cryogels are advantageous scaffolds for bone regeneration applications due to their high mechanical stability and macroporous structure. Anatomically, bone is composed of collagen and hydroxyapatite and during remodeling, these structural components are replaced. However, early forms of mineralization include calcium salts which take up to months to be converted to the desired hydroxyapatite form. Thus, it is beneficial to provide a primary source of hydroxyapatite within the scaffold, expediting the process of mineralization during bone regeneration. In this study, chitosan-gelatin (CG) cryogels were incorporated with various forms of hydroxyapatite to evaluate effects on the standard characteristics of cryogels, as well as the potential for increased mineralization. Testing included the comparison of porosity, swelling, mechanical integrity, cellular infiltration, and mineralization potential between all types of cryogels. The addition of bone char to CG cryogels produced scaffolds with appropriate porosity and interconnectivity. Additionally, the bone char cryogels exhibited an adequate swelling potential, suitable mechanical properties, excellent cell attachment, and increased mineralization. These properties support this cryogel for such an application in tissue engineering.


Assuntos
Regeneração Óssea/fisiologia , Substitutos Ósseos/química , Hidroxiapatitas/química , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Calcificação Fisiológica , Linhagem Celular , Quitosana/química , Criogéis , Gelatina/química , Humanos , Teste de Materiais , Engenharia Tecidual/métodos , Alicerces Teciduais/química
3.
Biomaterials ; 28(12): 2077-86, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17257670

RESUMO

The aim of this study was to investigate the effects of alginate and agarose on the response of bone marrow stromal cells (BMSCs) to chondrogenic stimuli. Rat BMSCs were expanded in monolayer culture with or without FGF-2 supplementation. Cells were then seeded in 2% alginate and agarose gels and cultured in media with or without TGF-beta1 or dexamethasone (Dex). Sulfated glycosaminoglycans (sGAGs), collagen type II, and aggrecan were expressed in all groups that received TGF-beta1 treatment during hydrogel culture. Expansion of rat BMSCs in the presence of FGF-2 increased production of sGAG in TGF-beta1-treated groups over those cultures that were treated with TGF-beta1 alone in alginate cultures. However, in agarose, cells exposed to FGF-2 during expansion produced less sGAG within TGF-beta1-supplemented groups over those cultures treated with TGF-beta1 alone. Dex was required for optimal matrix synthesis in both hydrogels, but was found to decrease cell viability in agarose constructs. These results indicate that the response of BMSCs to a chondrogenic growth factor regimen is scaffold dependent.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Dexametasona/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hidrogéis , Células Estromais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Animais , Células da Medula Óssea/citologia , Ratos , Células Estromais/citologia
4.
Tissue Eng ; 9(4): 587-96, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-13678438

RESUMO

Interactions between bone and cartilage formation are critical during growth and fracture healing and may influence the functional integration of osteochondral repair constructs. In this study, the ability of tissue-engineered cartilage constructs to support bone formation under controlled mechanical loading conditions was evaluated using a lapine hydraulic bone chamber model. Articular chondrocytes were seeded onto polymer disks, cultured for 4 weeks in vitro, and then transferred to empty bone chambers previously implanted into rabbit femoral metaphyses. The effects of chondrocyte viability within the implanted constructs and in vivo mechanical loading on bone formation were tested in separate experiments. After 4 weeks in vivo, biopsies from the chambers consisted of a complex composite of bone, cartilage, and fibrous tissue, with bone forming in direct apposition to the cartilage constructs. Microcomputed tomography imaging of the chamber biopsies revealed that the implantation of viable constructs nearly doubled the bone volume fraction of the chamber tissue from 0.9 to 1.6% as compared with the implantation of devitalized constructs in contralateral control chambers. The application of an intermittent cyclic mechanical load was found to increase the bone volume fraction of the chamber tissue from 0.4 to 3.6% as compared with no-load control biopsies. The results of these experiments demonstrate that tissue-engineered cartilage constructs implanted into a well-vascularized bone defect will support direct appositional bone formation and that bone formation is significantly influenced by the viability of chondrocytes within the constructs and the local mechanical environment in vivo.


Assuntos
Materiais Biocompatíveis , Substitutos Ósseos , Cartilagem , Condrócitos , Engenharia Tecidual , Animais , Imuno-Histoquímica , Masculino , Coelhos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...