Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 7: 123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915327

RESUMO

Modification of functional groups attached to conjugated polymer backbones can drastically alter the material properties. Oxidation of electron-donating thioalkyl substituents to electron-withdrawing sulfoxides or sulfones is a particularly effective modification. However, so far, this reaction has not been studied for the modification of conjugated polymers used in organic electronics. Crucial questions regarding selectivity and reaction time waited to be addressed. Here, we show that the reaction is highly selective and complete within just a few minutes when using dimethyldioxirane (DMDO) for the oxidation of thioalkyl substituents attached to the well-investigated conjugated polymers poly(9-(1-octylnonyl)carbazole-alt-4,7-dithienylbenzothiadiazole) (PCDTBT) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT). The selectivity was confirmed by comparison with polymers obtained from pre-oxidized monomers and by control experiments using related polymers without thioalkyl substituents. Using DMDO, the oxidation yields acetone as the only side-product, which reduces the work-up to mere evaporation of solvents and excessive reagent. Our results show that this oxidation is an exciting method for the preparation of electron-deficient conjugated polymers. It may even allow the preparation of electron acceptors for solar cells directly from the electron donors.

2.
Nat Commun ; 9(1): 3237, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104597

RESUMO

Backbone functionalisation of conjugated polymers is crucial to their performance in many applications, from electronic displays to nanoparticle biosensors, yet there are limited approaches to introduce functionality. To address this challenge we have developed a method for the direct modification of the aromatic backbone of a conjugated polymer, post-polymerisation. This is achieved via a quantitative nucleophilic aromatic substitution (SNAr) reaction on a range of fluorinated electron-deficient comonomers. The method allows for facile tuning of the physical and optoelectronic properties within a batch of consistent molecular weight and dispersity. It also enables the introduction of multiple different functional groups onto the polymer backbone in a controlled manner. To demonstrate the versatility of this reaction, we designed and synthesised a range of emissive poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT)-based polymers for the creation of mono and multifunctional semiconducting polymer nanoparticles (SPNs) capable of two orthogonal bioconjugation reactions on the same surface.


Assuntos
Nanopartículas/química , Polimerização , Polímeros/química , Nanopartículas/ultraestrutura , Semicondutores , Compostos de Sulfidrila/química , Propriedades de Superfície
3.
Chem Sci ; 8(3): 2215-2225, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28507677

RESUMO

A convenient method of introducing pentafluorobenzene (PFB) as a single end-group in polythiophene derivatives is reported via in situ quenching of the polymerization. We demonstrate that the PFB-group is a particularly useful end-group due to its ability to undergo fast nucleophilic aromatic substitutions. Using this molecular handle, we are able to quantitatively tether a variety of common nucleophiles to the polythiophene backbone. The mild conditions required for the reaction allows sensitive functional moieties, such as biotin or a cross-linkable trimethoxysilane, to be introduced as end-groups. The high yield enabled the formation of a diblock rod-coil polymer from equimolar reactants under transition metal-free conditions at room temperature. We further demonstrate that water soluble polythiophenes end-capped with PFB can be prepared via the hydrolysis of an ester precursor, and that such polymers are amenable to functionalization under aqueous conditions.

4.
ACS Appl Mater Interfaces ; 8(45): 31154-31165, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27766837

RESUMO

The synthesis of the novel donor-acceptor monomer 4,7-bis[(E)-2-(5-bromo-3-dodecylylthiophen-2-yl)ethenyl]-5,6-difluoro-2,1,3-benzothiadiazole (FBT-V2T2) is reported. Polymerization with 4,4'-ditetradecyl-5,5'-bistrimethylstannyl-2,2'-bithiophene afforded a highly crystalline polymer that aggregated strongly in solution. Polymer films were well ordered resulting in high performance field-effect transistors with low onset voltages, negligible hysteresis, high channel current on/off ratios, and peak hole mobilities of up to 0.5 cm2 V-1 s-1. Notably the transistors exhibited close to ideal behavior with extracted mobilities almost independent of gate of voltage.

5.
Phys Chem Chem Phys ; 14(19): 6741-8, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22476508

RESUMO

Bessel beams were used to create a counter-propagating optical trap for capturing and manipulating aerosol particles. Aerosol droplets were characterized through measurement of the elastic scattered light at three wavelengths; the trapping wavelength of 532 nm was used in conjunction with two probe beams at 405 nm and 633 nm to reduce the uncertainty in estimating droplet radii of 1 µm or less. Control of the aerosol size distribution sampled by the counter-propagating trap was demonstrated by varying the trapping beam core diameters and intensities. Smaller droplet sizes were preferentially selected with a 1.7 µm core diameter compared to cores of 2.7 µm and 4.5 µm. Further, an increase in core intensity was shown to broaden the range in droplet sizes that were optically trapped. The possibility of using such an approach to isolate and analyze the properties of single accumulation mode aerosol particles is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...