Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1621, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424448

RESUMO

Autophagy in eukaryotes functions to maintain homeostasis by degradation and recycling of long-lived and unwanted cellular materials. Autophagy plays important roles in pathogenicity of various fungal pathogens, suggesting that autophagy is a novel target for development of antifungal compounds. Here, we describe bioluminescence resonance energy transfer (BRET)-based high-throughput screening (HTS) strategy to identify compounds that inhibit fungal ATG4 cysteine protease-mediated cleavage of ATG8 that is critical for autophagosome formation. We identified ebselen (EB) and its analogs ebselen oxide (EO) and 2-(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PT) as inhibitors of fungal pathogens Botrytis cinerea and Magnaporthe oryzae ATG4-mediated ATG8 processing. The EB and its analogs inhibit spore germination, hyphal development, and appressorium formation in Ascomycota pathogens, B. cinerea, M. oryzae, Sclerotinia sclerotiorum and Monilinia fructicola. Treatment with EB and its analogs significantly reduced fungal pathogenicity. Our findings provide molecular insights to develop the next generation of antifungal compounds by targeting autophagy in important fungal pathogens.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Virulência , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Esporos Fúngicos
2.
Mol Plant Pathol ; 25(1): e13404, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037862

RESUMO

Botrytis cinerea Pers. Fr. (teleomorph: Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity of B. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combat B. cinerea. TAXONOMY: Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botrytis, species: cinerea. HOST RANGE: B. cinerea infects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts of B. cinerea. GENETIC DIVERSITY: This polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PATHOGENICITY: Genetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. DISEASE CONTROL STRATEGIES: Efforts to control B. cinerea, being a high-diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.


Assuntos
Ascomicetos , Botrytis , Plantas/microbiologia , Especificidade de Hospedeiro , Ascomicetos/genética , RNA/metabolismo , Doenças das Plantas/microbiologia
3.
Genetics ; 224(3)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37216906

RESUMO

Bidirectional flow of information shapes the outcome of the host-pathogen interactions and depends on the genetics of each organism. Recent work has begun to use co-transcriptomic studies to shed light on this bidirectional flow, but it is unclear how plastic the co-transcriptome is in response to genetic variation in both the host and pathogen. To study co-transcriptome plasticity, we conducted transcriptomics using natural genetic variation in the pathogen, Botrytis cinerea, and large-effect genetic variation abolishing defense signaling pathways within the host, Arabidopsis thaliana. We show that genetic variation in the pathogen has a greater influence on the co-transcriptome than mutations that abolish defense signaling pathways in the host. Genome-wide association mapping using the pathogens' genetic variation and both organisms' transcriptomes allowed an assessment of how the pathogen modulates plasticity in response to the host. This showed that the differences in both organism's responses were linked to trans-expression quantitative trait loci (eQTL) hotspots within the pathogen's genome. These hotspots control gene sets in either the host or pathogen and show differential allele sensitivity to the host's genetic variation rather than qualitative host specificity. Interestingly, nearly all the trans-eQTL hotspots were unique to the host or pathogen transcriptomes. In this system of differential plasticity, the pathogen mediates the shift in the co-transcriptome more than the host.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Estudo de Associação Genômica Ampla , Botrytis/genética , Mutação , Mapeamento Cromossômico , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
4.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34003931

RESUMO

Botrytis cinerea is a fungal pathogen that causes necrotic disease on more than a thousand known hosts widely spread across the plant kingdom. How B. cinerea interacts with such extensive host diversity remains largely unknown. To address this question, we generated an infectivity matrix of 98 strains of B. cinerea on 90 genotypes representing eight host plants. This experimental infectivity matrix revealed that the disease outcome is largely explained by variations in either the host resistance or pathogen virulence. However, the specific interactions between host and pathogen account for 16% of the disease outcome. Furthermore, the disease outcomes cluster among genotypes of a species but are independent of the relatedness between hosts. When analyzing the host specificity and virulence of B. cinerea, generalist strains are predominant. In this fungal necrotroph, specialization may happen by a loss in virulence on most hosts rather than an increase of virulence on a specific host. To uncover the genetic architecture of Botrytis host specificity and virulence, a genome-wide association study (GWAS) was performed and revealed up to 1492 genes of interest. The genetic architecture of these traits is widespread across the B. cinerea genome. The complexity of the disease outcome might be explained by hundreds of functionally diverse genes putatively involved in adjusting the infection to diverse hosts.


Assuntos
Botrytis , Estudo de Associação Genômica Ampla , Botrytis/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas , Virulência/genética
5.
Genetics ; 215(1): 253-266, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32165442

RESUMO

In plant-pathogen relations, disease symptoms arise from the interaction of the host and pathogen genomes. Host-pathogen functional gene interactions are well described, whereas little is known about how the pathogen genetic variation modulates both organisms' transcriptomes. To model and generate hypotheses on a generalist pathogen control of gene expression regulation, we used the Arabidopsis thaliana-Botrytis cinerea pathosystem and the genetic diversity of a collection of 96 B. cinerea isolates. We performed expression-based genome-wide association (eGWA) for each of 23,947 measurable transcripts in Arabidopsis (host), and 9267 measurable transcripts in B. cinerea (pathogen). Unlike other eGWA studies, we detected a relative absence of locally acting expression quantitative trait loci (cis-eQTL), partly caused by structural variants and allelic heterogeneity hindering their identification. This study identified several distantly acting trans-eQTL linked to eQTL hotspots dispersed across Botrytis genome that altered only Botrytis transcripts, only Arabidopsis transcripts, or transcripts from both species. Gene membership in the trans-eQTL hotspots suggests links between gene expression regulation and both known and novel virulence mechanisms in this pathosystem. Genes annotated to these hotspots provide potential targets for blocking manipulation of the host response by this ubiquitous generalist necrotrophic pathogen.


Assuntos
Genoma Fúngico , Genoma de Planta , Interações Hospedeiro-Patógeno , Locos de Características Quantitativas , Transcriptoma , Arabidopsis/genética , Arabidopsis/microbiologia , Botrytis/genética , Botrytis/patogenicidade , Estudo de Associação Genômica Ampla/métodos , Polimorfismo Genético
6.
Genetics ; 214(2): 529-541, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852726

RESUMO

Plants integrate internal and external signals to finely coordinate growth and defense for maximal fitness within a complex environment. A common model suggests that growth and defense show a trade-offs relationship driven by energy costs. However, recent studies suggest that the coordination of growth and defense likely involves more conditional and intricate connections than implied by the trade-off model. To explore how a transcription factor (TF) network may coordinate growth and defense, we used a high-throughput phenotyping approach to measure growth and flowering in a set of single and pairwise mutants previously linked to the aliphatic glucosinolate (GLS) defense pathway. Supporting a link between growth and defense, 17 of the 20 tested defense-associated TFs significantly influenced plant growth and/or flowering time. The TFs' effects were conditional upon the environment and age of the plant, and more critically varied across the growth and defense phenotypes for a given genotype. In support of the coordination model of growth and defense, the TF mutant's effects on short-chain aliphatic GLS and growth did not display a simple correlation. We propose that large TF networks integrate internal and external signals and separately modulate growth and the accumulation of the defensive aliphatic GLS.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Epistasia Genética/genética , Proteínas de Arabidopsis/genética , Ácidos Graxos/genética , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Glucosinolatos/genética , Mutação , Fenótipo , Fatores de Transcrição/genética
7.
Plant Cell ; 31(12): 2823, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31628165
8.
Plant Cell ; 31(11): 2554-2555, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511314
9.
New Phytol ; 223(4): 2076-2089, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31104343

RESUMO

The genomic architecture of functionally important traits is key to understanding the maintenance of reproductive barriers and trait differences when divergent populations or species hybridize. We conducted a genome-wide association study (GWAS) to study trait architecture in natural hybrids of two ecologically divergent Populus species. We genotyped 472 seedlings from a natural hybrid zone of Populus alba and Populus tremula for genome-wide markers from reduced representation sequencing, phenotyped the plants in common gardens for 46 phytochemical (phenylpropanoid), morphological and growth traits, and used a Bayesian polygenic model for mapping. We detected three classes of genomic architectures: traits with finite, detectable associations of genetic loci with phenotypic variation in addition to highly polygenic heritability; traits with indications for polygenic heritability only; and traits with no detectable heritability. For the first class, we identified genome regions with plausible candidate genes for phenylpropanoid biosynthesis or its regulation, including MYB transcription factors and glycosyl transferases. GWAS in natural, recombinant hybrids represent a promising step towards resolving the genomic architecture of phenotypic traits in long-lived species. This facilitates the fine-mapping and subsequent functional characterization of genes and networks causing differences in hybrid performance and fitness.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Hibridização Genética , Compostos Fitoquímicos/metabolismo , Populus/crescimento & desenvolvimento , Populus/genética , Característica Quantitativa Herdável , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Fenótipo , Populus/anatomia & histologia , Probabilidade , Especificidade da Espécie
12.
Plant Physiol ; 178(3): 1406-1422, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30266748

RESUMO

Plant resistance to generalist pathogens with broad host ranges, such as Botrytis cinerea (Botrytis), is typically quantitative and highly polygenic. Recent studies have begun to elucidate the molecular genetic basis of plant-pathogen interactions using commonly measured traits, including lesion size and/or pathogen biomass. However, with the advent of digital imaging and high-throughput phenomics, there are a large number of additional traits available to study quantitative resistance. In this study, we used high-throughput digital imaging analysis to investigate previously poorly characterized visual traits of plant-pathogen interactions related to disease resistance using the Arabidopsis (Arabidopsis thaliana)/Botrytis pathosystem. From a large collection of visual lesion trait measurements, we focused on color, shape, and size to test how these aspects of the Arabidopsis/Botrytis interaction are genetically related. Through genome-wide association mapping in Arabidopsis, we show that lesion color and shape are genetically separable traits associated with plant disease resistance. Moreover, by employing defined mutants in 23 candidate genes identified from the genome-wide association mapping, we demonstrate links between loci and each of the different plant-pathogen interaction traits. These results expand our understanding of the functional mechanisms driving plant disease resistance.


Assuntos
Arabidopsis/genética , Botrytis/fisiologia , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Mapeamento Cromossômico , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia
15.
Nat Ecol Evol ; 2(6): 991-999, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735988

RESUMO

Invasion success of species introduced to novel environments may be facilitated by adaptive evolution and by phenotypic plasticity. Here we investigate the independent and joint contribution of both mechanisms as drivers of invasiveness in the perennial sunflower Helianthus tuberosus. We show that invasive genotypes have multiple origins, and that invasive spread was facilitated by the repeated evolution of extreme values in a single trait, clonality. In line with genetic accommodation theory, we establish that this evolutionary transition occurred by refining a preexisting plastic response of clonality to water availability. Further, we demonstrate that under the non-drought conditions typically experienced by this plant in its introduced range, invasive spread is mediated by hybrid vigour and/or two major additive-effect loci, and that these mechanisms are complementary. Thus, in H. tuberosus, evolution of invasiveness was facilitated by phenotypic plasticity, and involved the use of multiple genetic solutions to achieve the same invasiveness trait.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Variação Genética , Helianthus/fisiologia , Dispersão Vegetal/genética , Europa (Continente) , Espécies Introduzidas
16.
Plant Cell ; 30(4): 739-740, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29626070
17.
Evol Appl ; 9(7): 892-908, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27468307

RESUMO

Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.

18.
PLoS One ; 10(5): e0128200, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26010156

RESUMO

The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.


Assuntos
Quimera , Evolução Molecular , Populus , Propanóis/metabolismo , Locos de Características Quantitativas/fisiologia , Quimera/genética , Quimera/metabolismo , Populus/genética , Populus/metabolismo
19.
Mol Ecol ; 24(9): 2277-97, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25474505

RESUMO

Publication of The Genetics of Colonizing Species in 1965 launched the field of invasion genetics and highlighted the value of biological invasions as natural ecological and evolutionary experiments. Here, we review the past 50 years of invasion genetics to assess what we have learned and what we still don't know, focusing on the genetic changes associated with invasive lineages and the evolutionary processes driving these changes. We also suggest potential studies to address still-unanswered questions. We now know, for example, that rapid adaptation of invaders is common and generally not limited by genetic variation. On the other hand, and contrary to prevailing opinion 50 years ago, the balance of evidence indicates that population bottlenecks and genetic drift typically have negative effects on invasion success, despite their potential to increase additive genetic variation and the frequency of peak shifts. Numerous unknowns remain, such as the sources of genetic variation, the role of so-called expansion load and the relative importance of propagule pressure vs. genetic diversity for successful establishment. While many such unknowns can be resolved by genomic studies, other questions may require manipulative experiments in model organisms. Such studies complement classical reciprocal transplant and field-based selection experiments, which are needed to link trait variation with components of fitness and population growth rates. We conclude by discussing the potential for studies of invasion genetics to reveal the limits to evolution and to stimulate the development of practical strategies to either minimize or maximize evolutionary responses to environmental change.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Espécies Introduzidas , Epigênese Genética , Deriva Genética , Variação Genética , Genética Populacional , Fenótipo
20.
Ecol Lett ; 16(12): 1515-e7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24134397

RESUMO

The co-occurrence of geographical structure in herbivore communities, metabolomes and defence genes in forest trees has been analysed in the context of 'geographical mosaics' of coevolution. A deeper understanding of these important issues will require full integration of a 'genomic mosaic' view of species into community ecology.


Assuntos
Artrópodes/fisiologia , Genes de Plantas , Herbivoria/fisiologia , Metaboloma , Folhas de Planta/metabolismo , Populus/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...