Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 7(8): 2164-2175, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260199

RESUMO

Alternative treatment strategies against bacterial infections are required to decrease the use of antibiotics. This study tested the hypothesis that stimulation of the innate immune receptor Toll-like receptor 4 can be combined with antibiotics to improve the treatment of invasive pneumonia. The efficacy of the biosynthetic monophosphoryl lipid A (MPLA), a clinically approved Toll-like receptor 4 activator, was tested in a mouse model of Streptococcus pneumoniae respiratory infection. Interestingly, administration of amoxicillin or MPLA decreased 400- to 11 000-fold the bacterial load in the lungs and spleen but did not enhance survival compared to mock treatment. The single administration of a combination of MPLA and amoxicillin further reduced 10- to 18-fold the bacterial colonization and invasion and significantly improved protection against lethal disease. The combined administration of MPLA and amoxicillin in a context of infection was associated with transient increase of the serum concentrations of amoxicillin and pro-inflammatory cytokines and chemokines as well as the expression of immune genes in lung tissue. Remarkably, the systemic and lung immune activation extended beyond amoxicillin elimination, suggesting a two-step and cooperative anti-infective effect, i.e., rapid antibiotic-mediated alteration of bacteria and a long-lasting impact through mucosal and systemic immunity. Our proof-of-concept study demonstrated for the first time that boosting Toll-like receptor 4 signaling can synergize with antibiotics in order to increase the efficacy of therapy of bacterial pneumonia, thereby in fine reducing the dose or regimen of antibiotics.


Assuntos
Pneumonia Pneumocócica , Animais , Antibacterianos/uso terapêutico , Lipídeo A/análogos & derivados , Camundongos , Pneumonia Pneumocócica/tratamento farmacológico , Resultado do Tratamento
2.
Pharmaceutics ; 13(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808396

RESUMO

Combining amoxicillin with the immunostimulatory toll-like receptor 4 agonist monophosphoryl lipid A (MPLA) represents an innovative approach for enhancing antibacterial treatment success. Exploiting pharmacokinetic and pharmacodynamic data from an infection model of Streptococcus pneumoniae infected mice, we aimed to evaluate the preclinical exposure-response relationship of amoxicillin with MPLA coadministration and establish a link to survival. Antibiotic serum concentrations, bacterial numbers in lung and spleen and survival data of mice being untreated or treated with amoxicillin (four dose levels), MPLA, or their combination were analyzed by nonlinear mixed-effects modelling and time-to-event analysis using NONMEM® to characterize these treatment regimens. On top of a pharmacokinetic interaction, regarding the pharmacodynamic effects the combined treatment was superior to both monotherapies: The amoxicillin efficacy at highest dose was increased by a bacterial reduction of 1.74 log10 CFU/lung after 36 h and survival was increased 1.35-fold to 90.3% after 14 days both compared to amoxicillin alone. The developed pharmacometric pharmacokinetic/pharmacodynamic disease-treatment-survival models provided quantitative insights into a novel treatment option against pneumonia revealing a pharmacokinetic interaction and enhanced activity of amoxicillin and the immune system stimulator MPLA in combination. Further development of this drug combination flanked with pharmacometrics towards the clinical setting seems promising.

3.
Pharmaceutics ; 13(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922017

RESUMO

The treatment of respiratory tract infections is threatened by the emergence of bacterial resistance. Immunomodulatory drugs, which enhance airway innate immune defenses, may improve therapeutic outcome. In this concept paper, we aim to highlight the utility of pharmacometrics and Bayesian inference in the development of immunomodulatory therapeutic agents as an adjunct to antibiotics in the context of pneumonia. For this, two case studies of translational modelling and simulation frameworks are introduced for these types of drugs up to clinical use. First, we evaluate the pharmacokinetic/pharmacodynamic relationship of an experimental combination of amoxicillin and a TLR4 agonist, monophosphoryl lipid A, by developing a pharmacometric model accounting for interaction and potential translation to humans. Capitalizing on this knowledge and associating clinical trial extrapolation and statistical modelling approaches, we then investigate the TLR5 agonist flagellin. The resulting workflow combines expert and prior knowledge on the compound with the in vitro and in vivo data generated during exploratory studies in order to construct high-dimensional models considering the pharmacokinetics and pharmacodynamics of the compound. This workflow can be used to refine preclinical experiments, estimate the best doses for human studies, and create an adaptive knowledge-based design for the next phases of clinical development.

4.
Front Immunol ; 12: 629185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833755

RESUMO

The WHO declared the COVID-19 outbreak a public health emergency of international concern. The causative agent of this acute respiratory disease is a newly emerged coronavirus, named SARS-CoV-2, which originated in China in late 2019. Exposure to SARS-CoV-2 leads to multifaceted disease outcomes from asymptomatic infection to severe pneumonia, acute respiratory distress and potentially death. Understanding the host immune response is crucial for the development of interventional strategies. Humoral responses play an important role in defending viral infections and are therefore of particular interest. With the aim to resolve SARS-CoV-2-specific humoral immune responses at the epitope level, we screened clinically well-characterized sera from COVID-19 patients with mild and severe disease outcome using high-density peptide microarrays covering the entire proteome of SARS-CoV-2. Moreover, we determined the longevity of epitope-specific antibody responses in a longitudinal approach. Here we present IgG and IgA-specific epitope signatures from COVID-19 patients, which may serve as discriminating prognostic or predictive markers for disease outcome and/or could be relevant for intervention strategies.


Assuntos
COVID-19/imunologia , Epitopos/imunologia , Proteoma/imunologia , SARS-CoV-2/imunologia , Adulto , Anticorpos Antivirais/imunologia , Feminino , Humanos , Imunidade Humoral , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Masculino
5.
Talanta ; 201: 253-258, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31122420

RESUMO

To assess pharmacokinetics of amoxicillin (AMX) in mice, limitations such as a small sampling volume and low drug concentrations have to be addressed. Similar challenges are faced in a clinical framework, e.g. for therapeutic drug monitoring in neonates or small-scale in vitro investigations. An assay enabling quantification of small sample volumes but still at very low concentrations covering a broad concentration range is thus needed. A simple, rapid and highly sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and successfully validated for quantification of AMX in mouse serum according to European Medicines Agency guidelines. Sample preparation enabled the use of only 10 µL of serum, which is 5-fold less than comparable assays and allows to reduce the number of mice used in pharmacokinetic studies. After protein precipitation with 40 µL chilled methanol and dilution of the supernatant with water, the sample was injected into the LC system on a Poroshell 120 Phenyl Hexyl column (2.1 × 100 mm, 2.7 µm). Chromatographic separation was achieved using a gradient method consisting of acetonitrile and ultra-pure water, both with 0.1% (V/V) formic acid. Positive electrospray ionisation in multiple reaction monitoring mode was used for detection and quantification of AMX. Application to murine study samples demonstrated the reliability of the developed method being accurate and precise with a quantification range from 0.01 to 10 µg/mL. The assay is easily transferable due to a simple sample preparation and confirmed stability of AMX under various applied conditions.


Assuntos
Amoxicilina/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Calibragem , Limite de Detecção , Camundongos
6.
Front Immunol ; 10: 723, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024555

RESUMO

Bacterial infections of the respiratory tract constitute a major cause of death worldwide. Given the constant rise in bacterial resistance to antibiotics, treatment failure is increasingly frequent. In this context, innovative therapeutic strategies are urgently needed. Stimulation of innate immune cells in the respiratory tract [via activation of Toll-like receptors (TLRs)] is an attractive approach for rapidly activating the body's immune defenses against a broad spectrum of microorganisms. Previous studies of the TLR5 agonist flagellin in animal models showed that standalone TLR stimulation does not result in the effective treatment of pneumococcal respiratory infection but does significantly improve the therapeutic outcome of concomitant antibiotic treatment. Here, we investigated the antibacterial interaction between antibiotic and intranasal flagellin in a mouse model of pneumococcal respiratory infection. Using various doses of orally administered amoxicillin or systemically administered cotrimoxazole, we found that the intranasal instillation of flagellin (a dose that promotes maximal lung pro-inflammatory responses) induces synergistic rather than additive antibacterial effects against antibiotic-susceptible pneumococcus. We next set up a model of infection with pneumococcus that is resistant to multiple antibiotics in the context of influenza superinfection. Remarkably, the combination of amoxicillin and flagellin effectively treated superinfection with the amoxicillin-resistant pneumococcus since the bacterial clearance was increased by more than 100-fold compared to standalone treatments. Our results also showed that, in response to flagellin, the lung tissue generated an innate immune response even though it had been damaged by the influenza virus and pneumococcal infections. In conclusion, we demonstrated that the selective boosting of lung innate immunity is a conceptually advantageous approach for improving the effectiveness of antibiotic treatment and fighting antibiotic-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Pulmão/metabolismo , Infecções Pneumocócicas/tratamento farmacológico , Pneumonia Pneumocócica/tratamento farmacológico , Streptococcus pneumoniae/efeitos dos fármacos , Receptor 5 Toll-Like/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Imunidade Inata/efeitos dos fármacos , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções Pneumocócicas/metabolismo , Infecções Pneumocócicas/microbiologia , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia
7.
Nucleic Acids Res ; 47(D1): D716-D720, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30272193

RESUMO

Extensive use of next-generation sequencing (NGS) for pathogen profiling has the potential to transform our understanding of how genomic plasticity contributes to phenotypic versatility. However, the storage of large amounts of NGS data and visualization tools need to evolve to offer the scientific community fast and convenient access to these data. We introduce BACTOME as a database system that links aligned DNA- and RNA-sequencing reads of clinical Pseudomonas aeruginosa isolates with clinically relevant pathogen phenotypes. The database allows data extraction for any single isolate, gene or phenotype as well as data filtering and phenotypic grouping for specific research questions. With the integration of statistical tools we illustrate the usefulness of a relational database structure for the identification of phenotype-genotype correlations as an essential part of the discovery pipeline in genomic research. Furthermore, the database provides a compilation of DNA sequences and gene expression values of a plethora of clinical isolates to give a consensus DNA sequence and consensus gene expression signature. Deviations from the consensus thereby describe the genomic landscape and the transcriptional plasticity of the species P. aeruginosa. The database is available at https://bactome.helmholtz-hzi.de.


Assuntos
Bases de Dados Genéticas , Variação Genética , Pseudomonas aeruginosa/genética , Transcriptoma , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Genômica/métodos , Genômica/normas , Genótipo , Humanos , Fenótipo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Padrões de Referência , Software
8.
Infect Immun ; 84(1): 162-71, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26502908

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , Flagelina/imunologia , Evasão da Resposta Imune/imunologia , Metaloendopeptidases/metabolismo , Pseudomonas aeruginosa/imunologia , Células Epiteliais/imunologia , Flagelos/imunologia , Flagelina/metabolismo , Humanos , Interleucina-8/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Serina Endopeptidases/metabolismo , Fatores de Virulência
9.
J Bacteriol ; 196(2): 345-56, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24187091

RESUMO

Pseudomonas aeruginosa is distinguished by its broad metabolic diversity and its remarkable capability for adaptation, which relies on a large collection of transcriptional regulators and alternative sigma (σ) factors. The largest group of alternative σ factors is that of the extracytoplasmic function (ECF) σ factors, which control key transduction pathways for maintenance of envelope homeostasis in response to external stress and cell growth. In addition, there are specific roles of alternative σ factors in regulating the expression of virulence and virulence-associated genes. Here, we analyzed a deletion mutant of the ECF σ factor SigX and applied mRNA profiling to define the SigX-dependent regulon in P. aeruginosa in response to low-osmolarity-medium conditions. Furthermore, the combination of transcriptional data with chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) led to the identification of the DNA binding motif of SigX. Genome-wide mapping of SigX-binding regions revealed enrichment of downstream genes involved in fatty acid biosynthesis, type III secretion, swarming and cyclic di-GMP (c-di-GMP) signaling. In accordance, a sigX deletion mutant exhibited altered fatty acid composition of the cell membrane, reduced cytotoxicity, impaired swarming activity, elevated c-di-GMP levels, and increased biofilm formation. In conclusion, a combination of ChIP-seq with transcriptional profiling and bioinformatic approaches to define consensus DNA binding sequences proved to be effective for the elucidation of the regulon of the alternative σ factor SigX, revealing its role in complex virulence-associated phenotypes in P. aeruginosa.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Regulon , Fator sigma/metabolismo , Fatores de Virulência/biossíntese , Sítios de Ligação , Imunoprecipitação da Cromatina , Meios de Cultura/química , Deleção de Genes , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Pressão Osmótica , Ligação Proteica , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA