Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 120(27): 5032-40, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26905385

RESUMO

We studied Eley-Rideal molecular hydrogen formation on graphite using ab initio molecular dynamics, in the energy range relevant for the chemistry of the interstellar medium and for terrestrial experiments employing cold plasma (0.02-1 eV). We found substantial projectile steering effects that prevent dimer formation at low energies, thereby ruling out any catalytic synthetic pathways that form hydrogen molecules. Ortho and para dimers do form efficiently thanks to preferential sticking, but only at energies that are too high to be relevant for the chemistry of the interstellar medium. Computed reaction cross sections and ro-vibrational product populations are in good agreement with available experimental data and capable of generating adsorbate configurations similar to those observed with scanning tunneling microscopy techniques.

2.
J Chem Phys ; 135(16): 164701, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22047257

RESUMO

We investigated binding of hydrogen atoms to small polycyclic aromatic hydrocarbons (PAHs)--i.e., graphene dots with hydrogen-terminated edges--using density functional theory and correlated wavefunction techniques. We considered a number of PAHs with three to seven hexagonal rings and computed binding energies for most of the symmetry unique sites, along with the minimum energy paths for significant cases. The chosen PAHs are small enough to not present radical character at their edges, yet show a clear preference for adsorption at the edge sites which can be attributed to electronic effects. We show how the results, as obtained at different levels of theory, can be rationalized in detail with the help of a few simple concepts derivable from a tight-binding model of the π electrons.

3.
J Chem Phys ; 131(1): 014101, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19586090

RESUMO

We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M(1)); and 1 alkali, alkaline earth or 3d/4d transition metal atom (M(2)) plus two to five (BH(4))(-) groups, i.e., M(1)M(2)(BH(4))(2-5), using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially stable alloys with promising decomposition energies. The M(1)(Al/Mn/Fe)(BH(4))(4), (Li/Na)Zn(BH(4))(3), and (Na/K)(Ni/Co)(BH(4))(3) alloys are found to be the most promising, followed by selected M(1)(Nb/Rh)(BH(4))(4) alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...