Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 287(1919): 20192143, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31992167

RESUMO

Functional trait-based approaches are increasingly adopted to understand and project ecological responses to environmental change; however, most assume trait expression is constant between conspecifics irrespective of context. Using two species of benthic invertebrate (brittlestars Amphiura filiformis and Amphiura chiajei), we demonstrate that trait expression at individual and community levels differs with biotic and abiotic context. We use PERMANOVA to test the effect of species identity, density and local environmental history on individual (righting and burrowing) and community (particle reworking and burrow ventilation) trait expression, as well as associated effects on ecosystem functioning (sediment nutrient release). Trait expression differs with context, with repercussions for the faunal mediation of ecosystem processes; we find increased rates of righting and burial behaviour and greater particle reworking with increasing density that are reflected in nutrient generation. However, the magnitude of effects differed within and between species, arising from site-specific environmental and morphological differences. Our results indicate that traits and processes influencing change in ecosystem functioning are products of both prevailing and historic conditions that cannot be constrained within typologies. Trait-based study must incorporate context-dependent variation, including intraspecific differences from individual to ecosystem scales, to avoid jeopardizing projections of ecosystem functioning and service delivery.


Assuntos
Organismos Aquáticos/fisiologia , Invertebrados/fisiologia , Animais , Comportamento Animal , Biodiversidade , Equinodermos/fisiologia , Ecossistema , Fenótipo
2.
Sci Data ; 6(1): 58, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086191

RESUMO

The activities of a diverse array of sediment-dwelling fauna are known to mediate carbon remineralisation, biogeochemical cycling and other important properties of marine ecosystems, but the contributions that different seabed communities make to the global inventory have not been established. Here we provide a comprehensive georeferenced database of measured values of bioturbation intensity (Db, n = 1281), burrow ventilation rate (q, n = 765, 47 species) and the mixing depth (L, n = 1780) of marine soft sediments compiled from the scientific literature (1864-2018). These data provide reference information that can be used to inform and parameterise global, habitat specific and/or species level biogeochemical models that will be of value within the fields of geochemistry, ecology, climate, and palaeobiology. We include metadata relating to the source, timing and location of each study, the methodology used, and environmental and experimental information. The dataset presents opportunity to interrogate current ecological theory, refine functional typologies, quantify uncertainty and/or test the relevance and robustness of models used to project ecosystem responses to change.


Assuntos
Ciclo do Carbono , Ecossistema , Sedimentos Geológicos , Animais , Invertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...