Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 13714-13718, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38723156

RESUMO

We report the magnetic behavior of the hybrid perovskites [Gua]Mn1-xFe2x/3□x/3(HCOO)3 (0 ≤ x ≤ 0.88), showing that vacancy ordering drives bulk ferrimagnetism for x > 0.6. The behavior is rationalized in terms of a simple microscopic model of percolation-induced ferrimagnetism. Monte Carlo simulations driven by this model reproduce the experimental dependence of magnetic susceptibility on x and show that, at intermediate compositions, domains of short-range vacancy order lead to the emergence of local magnetization. Our results open up a new avenue for the design of multiferroic hybrid perovskites.

2.
Int J Nurs Pract ; : e13242, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332422

RESUMO

AIM: Expanding and sustaining student nurse placements outside of the acute sector is a universal challenge. This paper aims to evaluate the Care Home Education Facilitator Role introduced in one area of Wales, United Kingdom, and to report on the outcomes achieved from this novel role. METHODS: Semi-structured interviews were undertaken with key stakeholders including the Care Home Education Facilitator postholder leading the pilot, care home managers, higher education institutions' placement managers/coordinators, student nurses and national health service staff. RESULTS: Five key areas were identified, which included timing of introducing the post and establishing a clear rationale and understanding of the intention of the role. The benefits, challenges and suggested improvements to the Care Home Education Facilitator initiative are provided. CONCLUSION: Introducing the role of the Care Home Education Facilitator to work closely with key stakeholders resulted in increased placements for student nurses, but investing time in developing relationships with these stakeholders was critical to the success of the role.

4.
J Am Chem Soc ; 145(44): 24249-24259, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37879069

RESUMO

We study the phenomenology of cooperative off-centering of K+ ions in potassiated Prussian blue analogues (PBAs). The principal distortion mechanism by which this off-centering occurs is termed a "K-ion slide", and its origin is shown to lie in the interaction between local electrostatic dipoles that couple through a combination of electrostatics and elastic strain. Using synchrotron powder X-ray diffraction measurements, we determine the crystal structures of a range of low-vacancy K2M[Fe(CN)6] PBAs (M = Ni, Co, Fe, Mn, Cd) and establish an empirical link between composition, temperature, and slide-distortion magnitude. Our results reflect the common underlying physics responsible for K-ion slides and their evolution with temperature and composition. Monte Carlo simulations driven by a simple model of dipolar interactions and strain coupling reproduce the general features of the experimental phase behavior. We discuss the implications of our study for optimizing the performance of PBA K-ion battery cathode materials and also its relevance to distortions in other, conceptually related, hybrid perovskites.

5.
Nat Commun ; 14(1): 2917, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217479

RESUMO

Topochemistry enables step-by-step conversions of solid-state materials often leading to metastable structures that retain initial structural motifs. Recent advances in this field revealed many examples where relatively bulky anionic constituents were actively involved in redox reactions during (de)intercalation processes. Such reactions are often accompanied by anion-anion bond formation, which heralds possibilities to design novel structure types disparate from known precursors, in a controlled manner. Here we present the multistep conversion of layered oxychalcogenides Sr2MnO2Cu1.5Ch2 (Ch = S, Se) into Cu-deintercalated phases where antifluorite type [Cu1.5Ch2]2.5- slabs collapsed into two-dimensional arrays of chalcogen dimers. The collapse of the chalcogenide layers on deintercalation led to various stacking types of Sr2MnO2Ch2 slabs, which formed polychalcogenide structures unattainable by conventional high-temperature syntheses. Anion-redox topochemistry is demonstrated to be of interest not only for electrochemical applications but also as a means to design complex layered architectures.

6.
Chemistry ; 29(14): e202203148, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36519664

RESUMO

Tetrathiatriarylmethyl radicals (TAM or trityl) are receiving increasing attention in various fields of magnetic resonance such as imaging, dynamic nuclear polarization, spin labeling, and, more recently, molecular magnetism and quantum information technology. Here, a trityl radical attached via a phenyl bridge to a copper(II)tetraphenylporphyrin was synthesized, and its magnetic properties studied by multi-frequency continuous-wave electron paramagnetic resonance (EPR) spectroscopy and magnetic measurements. EPR revealed that the electron spin-spin coupling constant J between the trityl and Cu2+ spin centers is ferromagnetic with a magnitude of -2.3 GHz (-0.077 cm-1 , + J S → 1 S → 2 ${+J{\vec{S}}_{1}{\vec{S}}_{2}}$ convention) and a distribution width of 1.2 GHz (0.040 cm-1 ). With the help of density functional theory (DFT) calculations, the obtained ferromagnetic exchange coupling, which is unusual for para-substituted phenyl-bridged biradicals, could be related to the almost perpendicular orientation of the phenyl linker with respect to the porphyrin and trityl ring planes in the energy minimum, while the J distribution was rationalized by the temperature weighted rotation of the phenyl bridge about the molecular axis connecting both spin centers. This study exemplifies the importance of molecular dynamics for the homogeneity (or heterogeneity) of the magnetic properties of trityl-based systems.

7.
Am J Pharm Educ ; 87(2): ajpe8998, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35338069

RESUMO

Objective. Health care students are at particular risk of stress and exposure to adverse events, negatively affecting well-being and performance and leading to increased attrition. Academic resilience has been identified as one factor helping mitigate such negative effects in students. Despite this, there is limited research exploring the topic in pharmacy education.Methods. Using a cross-sectional survey design, students attending three schools of pharmacy in the United Kingdom (N=1161) completed psychometric measures of academic resilience and well-being. Comparative, correlational, and regression analyses were conducted, exploring the relationship between academic resilience and well-being.Results. Academic resilience and well-being were significantly lower in pharmacy students compared to other student populations. Academic resilience was a positive correlate and predictor for well-being. Academic resilience was highest in first-year students, declined over subsequent years of study, and varied by pharmacy school and gender but not ethnicity.Conclusion. Introducing and embedding strategies to enhance academic resilience in pharmacy education may improve well-being and performance and reduce attrition.


Assuntos
Educação em Farmácia , Farmácia , Estudantes de Farmácia , Humanos , Estudos Transversais , Reino Unido
8.
Chem Mater ; 34(21): 9503-9516, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36397836

RESUMO

Sr2NiO2Cu2Se2, comprising alternating [Sr2NiO2]2+ and [Cu2Se2]2- layers, is reported. Powder neutron diffraction shows that the Ni2+ ions, which are in a highly elongated NiO4Se2 environment with D4h symmetry, adopt a high-spin configuration and carry localized magnetic moments which order antiferromagnetically below ∼160 K in a √2a × âˆš2a × 2c expansion of the nuclear cell with an ordered moment of 1.31(2) µB per Ni2+ ion. The adoption of the high-spin configuration for this d 8 cation in a pseudo-square-planar ligand field is supported by consideration of the experimental bond lengths and the results of density functional theory (DFT) calculations. This is in contrast to the sulfide analogue Sr2NiO2Cu2S2, which, according to both experiment and DFT calculations, has a much more elongated ligand field, more consistent with the low-spin configuration commonly found for square-planar Ni2+, and accordingly, there is no evidence for magnetic moment on the Ni2+ ions. Examination of the solid solution Sr2NiO2Cu2(Se1-x S x )2 shows direct evidence from the evolution of the crystal structure and the magnetic ordering for the transition from high-spin selenide-rich compounds to low-spin sulfide-rich compounds as a function of composition. Compression of Sr2NiO2Cu2Se2 up to 7.2 GPa does not show any structural signature of a change in the spin state. Consideration of the experimental and computed Ni2+ coordination environments and their subtle changes as a function of temperature, in addition to transitions evident in the transport properties and magnetic susceptibilities in the end members, Sr2NiO2Cu2Se2 and Sr2NiO2Cu2S2, suggest that simple high-spin and low-spin models for Ni2+ may not be entirely appropriate and point to further complexities in these compounds.

9.
Chem Mater ; 34(11): 5000-5008, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35722203

RESUMO

We report the synthesis, crystal structure, thermal response, and electrochemical behavior of the Prussian blue analogue (PBA) K2Cu[Fe(CN)6]. From a structural perspective, this is the most complex PBA yet characterized: its triclinic crystal structure results from an interplay of cooperative Jahn-Teller order, octahedral tilts, and a collective "slide" distortion involving K-ion displacements. These different distortions give rise to two crystallographically distinct K-ion channels with different mobilities. Variable-temperature X-ray powder diffraction measurements show that K-ion slides are the lowest-energy distortion mechanism at play, as they are the only distortion to be switched off with increasing temperature. Electrochemically, the material operates as a K-ion cathode with a high operating voltage and an improved initial capacity relative to higher-vacancy PBA alternatives. On charging, K+ ions are selectively removed from a single K-ion channel type, and the slide distortions are again switched on and off accordingly. We discuss the functional importance of various aspects of structural complexity in this system, placing our discussion in the context of other related PBAs.

10.
Phys Rev Lett ; 128(17): 177201, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570439

RESUMO

In the dense metal-organic framework Na[Mn(HCOO)_{3}], Mn^{2+} ions (S=5/2) occupy the nodes of a "trillium" net. We show that the system is strongly magnetically frustrated: the Néel transition is suppressed well below the characteristic magnetic interaction strength; short-range magnetic order persists far above the Néel temperature; and the magnetic susceptibility exhibits a pseudo-plateau at 1/3-saturation magnetization. A simple model of nearest-neighbor Heisenberg antiferromagnetic and dipolar interactions accounts quantitatively for all observations, including an unusual 2-k magnetic ground state. We show that the relative strength of dipolar interactions is crucial to selecting this particular ground state. Geometric frustration within the classical spin liquid regime gives rise to a large magnetocaloric response at low applied fields that is degraded in powder samples as a consequence of the anisotropy of dipolar interactions.

11.
Inorg Chem ; 61(12): 4957-4964, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35286076

RESUMO

The development of sustainable and efficient cryogenic cooling materials is currently the subject of extensive research, with the aim of relieving the dependence of current low-temperature cooling methods on expensive and nonrenewable liquid helium. One potential method to achieve this is the use of materials demonstrating the magnetocaloric effect, where the cycling of an applied magnetic field leads to a net cooling effect due to changes in magnetic entropy upon application and removal of an external magnetic field. This study details the synthesis and characterization of a Ln3(adipate)4.5(DMF)2 series (where Ln = Gd-Er) of metal-organic framework (MOF) materials incorporating a flexible adipate ligand and their associated magnetocaloric and thermal expansion properties. The magnetocaloric performance of the Gd3(adipate)4.5(DMF)2 material was found to exhibit the highest magnetic entropy changes of the series, with a peak entropy change of 36.4 J kg-1 K-1 for a 5-0 T field change at a temperature of 2 K, which is suited for ultra-low-temperature cooling applications. Thermal expansion properties were also investigated within these materials, demonstrating modest negative and large positive thermal expansion identified along the different crystallographic axes within the MOF structures over a 100-300 K temperature range that demonstrated the novel mechanical properties of these adipate framework structures.

12.
Dalton Trans ; 50(33): 11376-11379, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34397063

RESUMO

Intercalation of lithium and ammonia into the layered semiconductor Bi2Se3 proceeds via a hyperextended (by >60%) ammonia-rich intercalate, to eventually produce a layered compound with lithium amide intercalated between the bismuth selenide layers which offers scope for further chemical manipulation.

13.
Chem Sci ; 12(12): 4494-4502, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34163714

RESUMO

Control over the spatial distribution of components in metal-organic frameworks has potential to unlock improved performance and new behaviour in separations, sensing and catalysis. We report an unprecedented single-step synthesis of multi-component metal-organic framework (MOF) nanoparticles based on the canonical ZIF-8 (Zn) system and its Cd analogue, which form with a core-shell structure whose internal interface can be systematically tuned. We use scanning transmission electron microscopy, X-ray energy dispersive spectroscopy and a new composition gradient model to fit high-resolution X-ray diffraction data to show how core-shell composition and interface characteristics are intricately controlled by synthesis temperature and reaction composition. Particle formation is investigated by in situ X-ray diffraction, which reveals that the spatial distribution of components evolves with time and is determined by the interplay of phase stability, crystallisation kinetics and diffusion. This work opens up new possibilities for the control and characterisation of functionality, component distribution and interfaces in MOF-based materials.

14.
J Am Chem Soc ; 142(46): 19588-19601, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33108185

RESUMO

For magnesium ion batteries (MIBs) to be used commercially, new cathodes must be developed that show stable reversible Mg intercalation. VS4 is one such promising material, with vanadium and disulfide anions [S2]2- forming one-dimensional linear chains, with a large interchain spacing (5.83 Å) enabling reversible Mg insertion. However, little is known about the details of the redox processes and structural transformations that occur upon Mg intercalation and deintercalation. Here, employing a suite of local structure characterization methods including X-ray photoelectron spectroscopy (XPS), V and S X-ray absorption near-edge spectroscopy (XANES), and 51V Hahn echo and magic-angle turning with phase-adjusted sideband separation (MATPASS) NMR, we show that the reaction proceeds via internal electron transfer from V4+ to [S2]2-, resulting in the simultaneous and coupled oxidation of V4+ to V5+ and reduction of [S2]2- to S2-. We report the formation of a previously unknown intermediate in the Mg-V-S compositional space, Mg3V2S8, comprising [VS4]3- tetrahedral units, identified by using density functional theory coupled with an evolutionary structure-predicting algorithm. The structure is verified experimentally via X-ray pair distribution function analysis. The voltage associated with the competing conversion reaction to form MgS plus V metal directly is similar to that of intermediate formation, resulting in two competing reaction pathways. Partial reversibility is seen to re-form the V5+ and S2- containing intermediate on charging instead of VS4. This work showcases the possibility of developing a family of transition metal polychalcogenides functioning via coupled cationic-anionic redox processes as a potential way of achieving higher capacities for MIBs.

15.
Inorg Chem ; 59(21): 15898-15912, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33058683

RESUMO

Sr2CrO2Cr2As2 and Ba2CrO2Cr2As2 with Cr2+ ions in CrO2 sheets and in CrAs layers crystallize with the Sr2Mn3Sb2O2 structure (space group I4/mmm, Z = 2) and lattice parameters a = 4.00800(2) Å, c = 18.8214(1) Å (Sr2CrO2Cr2As2) and a = 4.05506(2) Å, c = 20.5637(1) Å (Ba2CrO2Cr2As2) at room temperature. Powder neutron diffraction reveals checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the arsenide layers below TN1_Sr, of 600(10) K (Sr2CrO2Cr2As2) and TN1_Ba 465(5) K (Ba2CrO2Cr2As2) with the moments initially directed perpendicular to the layers in both compounds. Checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the oxide layer below 230(5) K for Ba2CrO2Cr2As2 occurs with these moments also perpendicular to the layers, consistent with the orientation preferences of d4 moments in the two layers. In contrast, below 330(5) K in Sr2CrO2Cr2As2, the oxide layer Cr2+ moments are initially oriented in the CrO2 plane; but on further cooling, these moments rotate to become perpendicular to the CrO2 planes, while the moments in the arsenide layers rotate by 90° with the moments on the two sublattices remaining orthogonal throughout [behavior recently reported independently by Liu et al. [Liu et al. Phys. Rev. B 2018, 98, 134416]]. In Sr2CrO2Cr2As2, electron diffraction and high resolution powder X-ray diffraction data show no evidence for a structural distortion that would allow the two Cr2+ sublattices to couple, but high resolution neutron powder diffraction data suggest a small incommensurability between the magnetic structure and the crystal structure, which may account for the coupling of the two sublattices and the observed spin reorientation. The saturation values of the Cr2+ moments in the CrO2 layers (3.34(1) µB (for Sr2CrO2Cr2As2) and 3.30(1) µB (for Ba2CrO2Cr2As2)) are larger than those in the CrAs layers (2.68(1) µB for Sr2CrO2Cr2As2 and 2.298(8) µB for Ba2CrO2Cr2As2) reflecting greater covalency in the arsenide layers.

16.
Nurse Educ Pract ; 43: 102711, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32106070

RESUMO

This paper discusses the context of assessing nursing and midwifery students who are not meeting required levels of proficiency in clinical practice. The paper then outlines an action plan protocol designed to assist supervisors and assessors examine the credibility of their assessment decisions in these circumstances. Development of the protocol draws on a comprehensive review of evidence and original research showing the personal, professional and organizational pressures faced when a student is failing to achieve proficiency in clinical practice. The action plan protocol is suggested as one way of addressing the need to document concerns to enable students to ultimately self-regulate their learning and professional development.

17.
Nat Commun ; 10(1): 5475, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792221

RESUMO

Mixed-valent transition metal compounds display complex structural, electronic and magnetic properties which can often be exquisitely tuned. Here the charge-ordered state of stoichiometric CaFe3O5 is probed using neutron powder diffraction, Monte Carlo simulation and symmetry analysis. Magnetic ordering is dominated by the formation of ferromagnetic Fe3+-Fe2+-Fe3+ trimers which are evident above the magnetic ordering transition. Between TN = 289 K and 281 K an incommensurate magnetically ordered phase develops due to magnetic frustration, but a spin Jahn-Teller distortion lifts the frustration and enables the magnetic ordering to lock in to a charge-ordered commensurate state at lower temperatures. Stoichiometric CaFe3O5 exhibits single phase behaviour throughout and avoids the phase separation into two distinct crystallographic phases with different magnetic structures and Fe valence distributions reported recently, which likely occurs due to partial Fe2+ for Ca2+ substitution. This underlines the sensitivity of the magnetism and chemistry of these mixed-valent systems to composition.

18.
Inorg Chem ; 58(12): 8140-8150, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31185546

RESUMO

The synthesis and structure of two new transition metal oxide tellurides, Sr2MnO2Cu1.82(2)Te2 and Sr2CoO2Cu2Te2, are reported. Sr2CoO2Cu2Te2 with the purely divalent Co2+ ion in the oxide layers has magnetic ordering based on antiferromagnetic interactions between nearest neighbors and appears to be inert to attempted topotactic oxidation by partial removal of the Cu ions. In contrast, the Mn analogue with the more oxidizable transition metal ion has a 9(1)% Cu deficiency in the telluride layer when synthesized at high temperatures, corresponding to a Mn oxidation state of +2.18(2), and neutron powder diffraction revealed the presence of a sole highly asymmetric Warren-type magnetic peak, characteristic of magnetic ordering that is highly two-dimensional and not fully developed over a long range. Topotactic oxidation by the chemical deintercalation of further copper using a solution of I2 in acetonitrile offers control over the Mn oxidation state and, hence, the magnetic ordering: oxidation yielded Sr2MnO2Cu1.58(2)Te2 (Mn oxidation state of +2.42(2)) in which ferromagnetic interactions between Mn ions result from Mn2+/3+ mixed valence, resulting in a long-range-ordered A-type antiferromagnet with ferromagnetic MnO2 layers coupled antiferromagnetically.

19.
Inorg Chem ; 58(6): 3838-3850, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30799613

RESUMO

The chemical accessibility of the CeIV oxidation state enables redox chemistry to be performed on the naturally coinage-metal-deficient phases CeM1- xSO (M = Cu, Ag). A metastable black compound with the PbFCl structure type (space group P4/ nmm: a = 3.8396(1) Å, c = 6.607(4) Å, V = 97.40(6) Å3) and a composition approaching CeSO is obtained by deintercalation of Ag from CeAg0.8SO. High-resolution transmission electron microscopy reveals the presence of large defect-free regions in CeSO, but stacking faults are also evident which can be incorporated into a quantitative model to account for the severe peak anisotropy evident in all the high-resolution X-ray and neutron diffractograms of bulk CeSO samples; these suggest that a few percent of residual Ag remains. A straw-colored compound with the filled PbFCl (i.e., ZrSiCuAs- or HfCuSi2-type) structure (space group P4/ nmm: a = 3.98171(1) Å, c = 8.70913(5) Å, V = 138.075(1) Å3) and a composition close to LiCeSO, but with small amounts of residual Ag, is obtained by direct reductive lithiation of CeAg0.8SO or by insertion of Li into CeSO using chemical or electrochemical means. Computation of the band structure of pure, stoichiometric CeSO predicts it to be a Ce4+ compound with the 4f-states lying approximately 1 eV above the sulfide-dominated valence band maximum. Accordingly, the effective magnetic moment per Ce ion measured in the CeSO samples is much reduced from the value found for the Ce3+-containing LiCeSO, and the residual paramagnetism corresponds to the Ce3+ ions remaining due to the presence of residual Ag, which presumably reflects the difficulty of stabilizing Ce4+ in the presence of sulfide (S2-). Comparison of the behavior of CeCu0.8SO with that of CeAg0.8SO reveals much slower reaction kinetics associated with the Cu1- xS layers, and this enables intermediate CeCu1- xLi xSO phases to be isolated.

20.
Inorg Chem ; 57(24): 15379-15388, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30481015

RESUMO

The structures of two new oxide chalcogenide phases, Sr2CuO2Cu2S2 and Sr2CuO2Cu2Se2, are reported, both of which contain infinite CuO2 planes containing Cu2+ and which have Cu+ ions in the sulfide or selenide layers. Powder neutron diffraction measurements show that Sr2CuO2Cu2Se2 exhibits long-range magnetic ordering with a magnetic structure based on antiferromagnetic interactions between nearest-neighbor Cu2+ ions, leading to a √2 a × âˆš2 a × 2 c expansion of the nuclear cell. The ordered moment of 0.39(6) µB on the Cu2+ ions at 1.7 K is consistent with the value predicted by density functional theory calculations. The compounds are structurally related to the cuprate superconductors and may also be considered as analogues of the parent phases of this class of superconductor such as Sr2CuO2Cl2 or La2CuO4. In the present case, however, the top of the chalcogenide-based valence band is very close to the vacant Cu2+ 3d states of the conduction band, leading to relatively high measured conductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...