Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744209

RESUMO

The removal of Cd2+, Zn2+ and Ni2+ from metal solutions onto waste toner power (WTP) was investigated. The influence of parameters such as pH, contact time, initial metal concentration and adsorbent dosage was studied in batch adsorption experiments. Batch equilibrium experiments showed that the highest removal efficiency for Zn2+ and Cd2+ occurs at pH 7, while pH 5 is the most suitable for Ni2+ removal. The amount of metal removed (mg/g) improved when increasing the initial concentration, and sorption of heavy metals reached equilibrium in 24 h. Metals' uptake increased with increasing adsorbent dosage. The adsorption isotherms of Zn2+, Cd2+ and Ni2+ onto WTP fit the Langmuir better than the Freundlich model with correlation coefficient R2 values ranging from 0.998 to 0.968 and 0.989 to 0.881, respectively. The data showed that the maximum adsorption capacity of heavy metals, amax, ranged from 2.42 to 1.61 mg/g, from 6.22 to 2.01 mg/g and from 3.49 to 2.56 mg/g for Ni2+, Zn2+ and Cd2+, respectively, with the three WTPs used in this study. This adsorbent can potentially be used to remove metal ions from wastewater.

2.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161021

RESUMO

Mining activities are essential for a population's development; however, they also produce negative effects such as the production of waste, an impact on flora and water pollution. On the other hand, construction is one of the sectors which is most demanding of raw materials, with one of the main such materials being water. For this reason, this research evaluates the feasibility of incorporating water contaminated by mining waste into ceramic materials for bricks. In this way, the use of water is reduced and, on the other hand, the contaminating elements of the mining water are encapsulated in the ceramic matrix. To achieve this, the clay used and the contaminated water were first analysed, then different families of samples were conformed with different percentages of contaminated water. These samples were tested to determine their physical and mechanical properties. At the same time, leachate tests were carried out to determine that the ceramic material created did not cause environmental problems. The test results showed that the physical and mechanical properties of the ceramics were not influenced by the addition of contaminated water. On the other hand, the leachate tests showed that encapsulation of most of the potentially toxic elements occurred. However, the use of contaminated water as mixing water for ceramics could only be performed up to 60%, as higher percentages would leach impermissible arsenic concentrations. Accordingly, a new way of reusing water contaminated by mining activities is developed in this study, taking advantage of resources, avoiding environmental pollution and creating economic and environmentally friendly end products.

3.
Materials (Basel) ; 14(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34683783

RESUMO

The construction sector is one of the most demanding sectors of raw materials in existence today. As a consequence, the extraction of these materials has a significant impact on the environment. At the same time, mining activities produce a series of wastes, in some cases with polluting elements, which must be treated to avoid pollution. Therefore, the use of mining waste for the conformation of new construction materials is an important environmental advantage, even more so when such waste is prevented from producing polluting leachates. Therefore, in this research, geopolymers are developed with mine tailings from the Linares lead mines, chemically activated with potassium hydroxide. For this purpose, different percentages of the alkaline activator were tested and the physical and mechanical properties of the conformed materials were evaluated. The analysis of the different conformed geopolymers determined the optimum percentage of potassium hydroxide for conforming the geopolymer with the best mechanical and physical properties. In addition, the concentration in the leachate of potentially contaminating chemical elements in the mining waste was estimated to be lower than those regulated by the regulations. Consequently, this research shows the development of a sustainable material for construction with mining waste and reduction of the environmental impact of traditional products.

4.
J Environ Manage ; 182: 525-530, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27538248

RESUMO

Gases such as CO, CO2 or NOx are constantly generated by the equipment in any underground mine and the ventilation layout can play an important role in keeping low concentrations in the working faces. Hence, a method able to control the workplace environment is crucial. This paper proposes a geographical information system (GIS) for such goal. The system created provides the necessary tools to manage and analyse an underground environment, connecting pollutants and temperatures with the ventilation characteristics over time. Data concerning the ventilation system, in a case study, has been taken every month since 2009 and integrated into the management system, which has quantified the gasses concentration throughout the mine due to the characteristics and evolution of the ventilation layout. Three different zones concerning CO, CO2, NOx and effective temperature have been found as well as some variations among workplaces within the same zone that suggest local airflow recirculations. The system proposed could be a useful tool to improve the workplace conditions and efficiency levels.


Assuntos
Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Mineração , Ventilação , Ar/análise , Poluentes Atmosféricos/análise , Meio Ambiente , Exposição Ambiental , Gases/análise , Temperatura Alta , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...