Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Transplant ; 21(12): 2555-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22862886

RESUMO

Magnetic resonance (MR) imaging of superparamagnetic iron oxide (SPIO)-labeled stem cells offers a noninvasive evaluation of stem cell engraftment in host organs. Excessive cellular iron load from SPIO labeling, however, impairs stem cell differentiation. The purpose of this study was to magnetically label human embryonic stem cells (hESCs) via a reduced exposure protocol that maintains a significant MR signal and no significant impairment to cellular pluripotency or differentiation potential. hESCs were labeled by simple incubation with Food and Drug Administration-approved ferumoxides, using concentrations of 50- 200 µg Fe/ml and incubation times of 3-24 h. The most reduced exposure labeling protocol that still provided a significant MR signal comparable to accepted labeling protocols was selected for subsequent studies. Labeled hESCs were compared to unlabeled controls for differences in pluripotency as studied by fluorescence staining for SSEA-1, SSEA-4, TRA-60, and TRA-81 and in differentiation capacity as studied by quantitative real-time PCR for hOCT4, hACTC1, hSOX1, and hAFP after differentiation into embryoid bodies (EBs). Subsequent MR and microscopy imaging were performed to evaluate for cellular iron distribution and long-term persistence of the label. An incubation concentration of 50 µg Fe/ml and incubation time of 3 h demonstrated a significantly reduced exposure protocol that yielded an intracellular iron uptake of 4.50 ± 0.27 pg, an iron content comparable to currently accepted SPIO labeling protocols. Labeled and unlabeled hESCs showed no difference in pluripotency or differentiation capacity. Ferumoxide-labeled hESCs demonstrated persistent MR contrast effects as embryoid bodies for 21 days. Electron microscopy confirmed persistent lysosomal storage of iron oxide particles in EBs up to 9 days, while additional microscopy visualization confirmed the iron distribution within single and multiple EBs. Labeling hESCs with ferumoxides by this tailored protocol reduces exposure of cells to the labeling agent while allowing for long-term visualization with MR imaging and the retention of cellular pluripotency and differentiation potential.


Assuntos
Células-Tronco Embrionárias/citologia , Magnetismo , Diferenciação Celular , Linhagem Celular , Meios de Contraste/química , Meios de Contraste/metabolismo , Dextranos/química , Células-Tronco Embrionárias/metabolismo , Humanos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Microscopia Eletrônica de Transmissão
2.
Radiology ; 262(2): 613-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22157202

RESUMO

PURPOSE: To evaluate the role of positron emission tomography (PET)/computed tomography (CT) in the differentiation of normal thymus from mediastinal lymphoma and lymphoma recurrence in pediatric patients. MATERIALS AND METHODS: The study was approved by the institutional review board, and informed consent was waived. The study was HIPAA compliant. Two hundred eighty-two fluorine 18 fluorodeoxyglucose PET/CT studies in 75 pediatric oncology patients were reviewed retrospectively. Patients were divided into four groups: anterior mediastinal lymphoma (group A, n=16), anterior mediastinal lymphoma with subsequent recurrence (group B, n=5), lymphoma outside the mediastinum (group C, n=16), and other malignant tumors outside the thymus (group D, n=38). Analyses included measurements of the maximum anteroposterior and transverse dimensions of the anterior mediastinal mass or thymus on axial CT images and measurements of maximum standardized uptake values of anterior mediastinal mass, thymus (SUVt), and bone marrow at the level of the fifth lumbar vertebra (SUVb) on PET images. Quantitative parameters were compared by using an analysis of variance test. RESULTS: Mean prechemotherapy SUVt was 4.82 for group A, 8.45 for group B, 2.00 for group C, and 2.09 for group D. Mean postchemotherapy SUVt for group B was 4.74. Thymic rebound (mean SUVt, 2.89) was seen in 44% of patients at a mean interval of 10 months from the end of chemotherapy. The differences between prechemotherapy SUVt of mediastinal lymphoma and normal thymus and postchemotherapy SUVt of lymphoma recurrence and thymic rebound were highly significant (P<.001). CONCLUSION: SUVt is a sensitive predictor for differentiation of normal thymus or thymic rebound from mediastinal lymphoma. SUVt of 3.4 or higher is a strong predictor of mediastinal lymphoma.


Assuntos
Linfoma/diagnóstico , Neoplasias do Mediastino/diagnóstico , Recidiva Local de Neoplasia/diagnóstico , Tomografia por Emissão de Pósitrons/métodos , Timo/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adolescente , Criança , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Técnica de Subtração
3.
J Vis Exp ; (57): e3482, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22083287

RESUMO

Stem cell based therapies offer significant potential for the field of regenerative medicine. However, much remains to be understood regarding the in vivo kinetics of transplanted cells. A non-invasive method to repetitively monitor transplanted stem cells in vivo would allow investigators to directly monitor stem cell transplants and identify successful or unsuccessful engraftment outcomes. A wide range of stem cells continues to be investigated for countless applications. This protocol focuses on 3 different stem cell populations: human embryonic kidney 293 (HEK293) cells, human mesenchymal stem cells (hMSC) and induced pluripotent stem (iPS) cells. HEK 293 cells are derived from human embryonic kidney cells grown in culture with sheared adenovirus 5 DNA. These cells are widely used in research because they are easily cultured, grow quickly and are easily transfected. hMSCs are found in adult marrow. These cells can be replicated as undifferentiated cells while maintaining multipotency or the potential to differentiate into a limited number of cell fates. hMSCs can differentiate to lineages of mesenchymal tissues, including osteoblasts, adipocytes, chondrocytes, tendon, muscle, and marrow stroma. iPS cells are genetically reprogrammed adult cells that have been modified to express genes and factors similar to defining properties of embryonic stem cells. These cells are pluripotent meaning they have the capacity to differentiate into all cell lineages. Both hMSCs and iPS cells have demonstrated tissue regenerative capacity in-vivo. Magnetic resonance (MR) imaging together with the use of superparamagnetic iron oxide (SPIO) nanoparticle cell labels have proven effective for in vivo tracking of stem cells due to the near microscopic anatomical resolution, a longer blood half-life that permits longitudinal imaging and the high sensitivity for cell detection provided by MR imaging of SPIO nanoparticles. In addition, MR imaging with the use of SPIOs is clinically translatable. SPIOs are composed of an iron oxide core with a dextran, carboxydextran or starch surface coat that serves to contain the bioreactive iron core from plasma components. These agents create local magnetic field inhomogeneities that lead to a decreased signal on T2-weighted MR images. Unfortunately, SPIOs are no longer being manufactured. Second generation, ultrasmall SPIOs (USPIO), however, offer a viable alternative. Ferumoxytol (FerahemeTM) is one USPIO composed of a non-stoichiometric magnetite core surrounded by a polyglucose sorbitol carboxymethylether coat. The colloidal, particle size of ferumoxytol is 17-30 nm as determined by light scattering. The molecular weight is 750 kDa, and the relaxivity constant at 2T MRI field is 58.609 mM(-1) sec(-1) strength. Ferumoxytol was recently FDA-approved as an iron supplement for treatment of iron deficiency in patients with renal failure. Our group has applied this agent in an "off label" use for cell labeling applications. Our technique demonstrates efficient labeling of stem cells with ferumoxytol that leads to significant MR signal effects of labeled cells on MR images. This technique may be applied for non-invasive monitoring of stem cell therapies in pre-clinical and clinical settings.


Assuntos
Células-Tronco Embrionárias/química , Óxido Ferroso-Férrico/química , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/química , Células-Tronco Pluripotentes/química , Células HEK293 , Humanos , Rim/citologia , Rim/embriologia , Imageamento por Ressonância Magnética
4.
Pediatr Radiol ; 41(11): 1384-92, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21594541

RESUMO

BACKGROUND: Human embryonic stem cells (hESC) can generate cardiomyocytes (CM), which offer promising treatments for cardiomyopathies in children. However, challenges for clinical translation result from loss of transplanted cell from target sites and high cell death. An imaging technique that noninvasively and repetitively monitors transplanted hESC-CM could guide improvements in transplantation techniques and advance therapies. OBJECTIVE: To develop a clinically applicable labeling technique for hESC-CM with FDA-approved superparamagnetic iron oxide nanoparticles (SPIO) by examining labeling before and after CM differentiation. MATERIALS AND METHODS: Triplicates of hESC were labeled by simple incubation with 50 µg/ml of ferumoxides before or after differentiation into CM, then imaged on a 7T MR scanner using a T2-weighted multi-echo spin-echo sequence. Viability, iron uptake and T2-relaxation times were compared between groups using t-tests. RESULTS: hESC-CM labeled before differentiation demonstrated significant MR effects, iron uptake and preserved function. hESC-CM labeled after differentiation showed no significant iron uptake or change in MR signal (P < 0.05). Morphology, differentiation and viability were consistent between experimental groups. CONCLUSION: hESC-CM should be labeled prior to CM differentiation to achieve a significant MR signal. This technique permits monitoring delivery and engraftment of hESC-CM for potential advancements of stem cell-based therapies in the reconstitution of damaged myocardium.


Assuntos
Meios de Contraste/metabolismo , Células-Tronco Embrionárias/citologia , Imageamento por Ressonância Magnética , Miócitos Cardíacos/citologia , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Óxido Ferroso-Férrico/metabolismo , Humanos , Nanopartículas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...