Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indian J Microbiol ; 61(1): 85-90, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33505097

RESUMO

Fungi are the primary infectious agents in plant crops and many post-harvest fungal diseases of fruit and vegetables causing significant economic losses worldwide. Here, the antifungal effect of Prosopis glandulosa extract (PgE) against phytopathogenic fungi was evaluated. The effect with PgE (5, 4, 2, 1, 0%) as AI (%) and radial growth rate reduction (Kr %) were determined in vitro in Colletotrichum gloeosporoides, Fusarium oxysporum, Rhizopus oryzae and R. stolonifer (1 × 105 spores/mL). The phytopathogenicity of fungal strains was performed under in vivo conditions (room temperature, 25-30 °C and refrigeration, ~ 4 °C) by fruit surface inoculation method on strawberries, tomatoes and carrots by recording the development of mycelial growth, necrosis, soft rot and dehydration symptoms showed on each fruit at 14 days. The extract (5%) showed the highest AI against C. gloesporioides (~ 96%), and F. oxysporum (~ 79%) and growth rate reduction of 74.92% and 64.82% respectively. Likewise, the extract controls the development of phytopathogenicity symptoms against C. gloesporioides and F. oxysporum in vivo conditions, nevertheless, was less efficiency against both Rhizopus species. The P. glandulosa extract represents an efficient, economical, and eco-friendly alternative to preserve the quality of the agricultural products and to increase their shelf life.

2.
Food Sci Nutr ; 3(5): 434-42, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26405529

RESUMO

Mexican Tuba (M-Tuba) and Tepache are Mexican fermented beverages prepared mainly with pineapple pulp and coconut palm, respectively. At present, reports on the microbiota and nutritional effects of both beverages are lacking. The purpose of this study was to determine whether M-Tuba and Tepache contain cultivable lactic acid bacteria (LAB) capable of producing bacteriocins. Tepache and M-Tuba contain mesophilic aerobic bacteria, LAB, and yeast. Bacillus subtilis, Listeria monocytogenes, Listeria innocua, Streptococcus agalactiae, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, and Salmonella spp, were the microorganisms most susceptible to metabolites produced by bacterial isolates. M-Tuba and Tepache contain bacteria that harbor genes coding for nisin and enterocin, but not pediocin. The presence of Lactococcus lactis and E. faecium in M-Tuba and Tepache, was identified by 16S rDNA. These bacteria produced bacteriocins of ∼3.5 kDa and 4.0-4.5 kDa, respectively. Partial purified bacteriocins showed inhibitory effect against Micrococcus luteus, L. monocytogenes, L. innocua, Str. agalactiae, S. aureus, Bacillus cereus, B. subtilis, E. faecalis, and K. pneumoniae. We characterized, for the first time, cultivable microbiota of M-Tuba and Tepache, and specifically, identified candidate lactic bacteria (LAB) present in these beverages that were capable of synthesizing antimicrobial peptides, which collectively could provide food preservative functions.

3.
Microb Cell Fact ; 13: 15, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24460864

RESUMO

BACKGROUND: The endochitinase ChiA74 is a soluble secreted enzyme produced by Bacillus thuringiensis that synergizes the entomotoxigenecity of Cry proteins that accumulate as intracellular crystalline inclusion during sporulation. The purpose of this study was to produce alkaline-soluble ChiA74∆sp inclusions in B. thuringiensis, and to determine its effect on Cry crystal production, sporulation and toxicity to an important agronomical insect, Manduca sexta. To this end we deleted the secretion signal peptide-coding sequence of chiA74 (i.e. chiA74∆sp) and expressed it under its native promoter (pEHchiA74∆sp) or strong chimeric sporulation-dependent cytA-p/STAB-SD promoter (pEBchiA74∆sp) in Escherichia coli, acrystalliferous B. thuringiensis (4Q7) and B. thuringiensis HD1. RESULTS: Based on mRNA analyses, up to ~9-fold increase in expression of chiA74∆sp was observed using the cytA-p/STAB-SD promoter. ChiA74∆sp (~70 kDa) formed intracellular inclusions that frequently accumulated at the poles of cells. ChiA74∆sp inclusions were dissolved in alkali and reducing conditions, similar to Cry crystals, and retained its activity in a wide range of pH (5 to 9), but showed a drastic reduction (~70%) at pH 10. Chitinase activity of E. coli-pEHchiA74∆sp was ~150 mU/mL, and in E. coli-pEBchiA74∆sp, 250 mU/mL. 4Q7-pEBchiA74∆sp and 4Q7-pEHchiA74∆sp had activities of ~127 mU/mL and ~41 mU/mL, respectively. The endochitinase activity in HD1-pEBchiA74∆sp increased 42x when compared to parental HD1 strain. HD1-pEBchiA74∆sp and HD1 harbored typical bipyramidal Cry inclusions, but crystals in the recombinant were ~30% smaller. Additionally, a 3x increase in the number of viable spores was observed in cultures of the recombinant strain when compared to HD1. Bioassays against first instar larvae of M. sexta with spore-crystals of HD1 or spore-crystal-ChiA74∆sp inclusions of HD1-pEBchiA74∆sp showed LC50s of 67.30 ng/cm² and 41.45 ng/cm², respectively. CONCLUSIONS: Alkali-labile ChiA74∆sp inclusion bodies can be synthesized in E. coli and B. thuringiensis strains. We demonstrated for the first time the applied utility of synthesis of ChiA74∆sp inclusions, Cry crystals and spores in the same sporangium of HD1, a strain used successfully worldwide to control economically significant lepidopteran pests of agriculture. Our findings will allow to us develop strategies to modify expression of ChiA74∆sp while maximizing Cry crystal synthesis in commercial strains of B. thuringiensis.


Assuntos
Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Quitinases/metabolismo , Corpos de Inclusão/metabolismo , Bacillus thuringiensis/enzimologia , Proteínas de Bactérias/genética , Quitinases/genética , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Esporos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...