Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Heliyon ; 10(5): e27295, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486744

RESUMO

Introduction: Dimethyl sulfoxide (DMSO), a widely utilized solvent in the medical industry, has been associated with various adverse effects, even at low concentrations, including damage to mitochondrial integrity, altered membrane potentials, caspase activation, and apoptosis. Notably, therapeutic molecules for central nervous system treatments, such as embolic agents or some chemotherapy drugs that are dissolved in DMSO, have been associated with hydrocephalus as a secondary complication. Our study investigated the potential adverse effects of DMSO on the brain, specifically focusing on the development of hydrocephalus and the effect on astrocytes. Methods: Varied concentrations of DMSO were intraventricularly injected into 3-day-old mice, and astrocyte cultures were exposed to similar concentrations of DMSO. After 14 days of injection, magnetic resonance imaging (MRI) was employed to quantify the brain ventricular volumes in mice. Immunofluorescence analysis was conducted to delineate DMSO-dependent effects in the brain. Additionally, astrocyte cultures were utilized to assess astrocyte viability and the effects of cellular apoptosis. Results: Our findings revealed a dose-dependent induction of ventriculomegaly in mice with 2%, 10%, and 100% DMSO injections (p < 0.001). The ciliated cells of the ventricles were also proportionally affected by DMSO concentration (p < 0.0001). Furthermore, cultured astrocytes exhibited increased apoptosis after DMSO exposure (p < 0.001). Conclusion: Our study establishes that intraventricular administration of DMSO induces hydrocephalus in a dose-dependent manner. This observation sheds light on a potential explanation for the occurrence of hydrocephalus as a secondary complication in intracranial treatments utilizing DMSO as a solvent.

2.
Childs Nerv Syst ; 40(1): 115-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37417983

RESUMO

PURPOSE: Proximal catheter obstruction is the leading cause of ventricular shunt failure in pediatric patients. Our aim is to evaluate various types of shunt catheters to assess in vitro cellular adhesion and obstruction. METHODS: Four catheter types were tested: (1) antibiotic and impregnated, (2) barium-stripe polyvinylpyrrolidone coated (PVP), (3) barium-stripe, and (4) barium-impregnated. Catheters were seeded with choroid plexus epithelial cells to test cellular adhesion and inoculated with the same cells to test flow/pressure performance under choroid plexus growth conditions. Ventricular catheters were placed into a three-dimensional printed phantom ventricular replicating system through which artificial cerebrospinal fluid (CSF) was pumped. Differential pressure sensors were used to measure catheter performance. RESULTS: PVP catheters had the lowest median cell attachment (10 cells) compared to antibiotic-impregnated (230 cells), barium stripe (513 cells), and barium-impregnated (146 cells) catheters after culture (p < 0.01). In addition, PVP catheters (- 0.247 cm H2O) and antibiotic-impregnated (- 1.15 cm H2O) catheters had significantly lower pressure in the phantom ventricular system compared to the barium stripe (0.167 cm H2O) and barium-impregnated (0.618 cm H2O; p < 0.01) catheters. CONCLUSIONS: PVP catheters showed less cellular adhesion and, together with antibiotic-impregnated catheters, required less differential pressure to maintain a consistent flow. Our findings suggest clinical relevance for using PVP ventricular catheters in patients with recurrent catheter obstruction by choroid plexus.


Assuntos
Plexo Corióideo , Hidrocefalia , Criança , Humanos , Plexo Corióideo/cirurgia , Povidona , Bário , Derivações do Líquido Cefalorraquidiano/métodos , Catéteres , Antibacterianos/uso terapêutico , Hidrocefalia/cirurgia , Hidrocefalia/tratamento farmacológico , Cateteres de Demora
3.
Exp Neurol ; 363: 114354, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822393

RESUMO

BACKGROUND: Hydrocephalus is a neurological disease with an incidence of 0.3-0.7 per 1000 live births in the United States. Ventriculomegaly, periventricular white matter alterations, inflammation, and gliosis are among the neuropathologies associated with this disease. We hypothesized that hippocampus structure and subgranular zone neurogenesis are altered in untreated hydrocephalus and correlate with recognition memory deficits. METHODS: Hydrocephalus was induced by intracisternal kaolin injections in domestic juvenile pigs (43.6 ± 9.8 days). Age-matched sham controls received similar saline injections. MRI was performed to measure ventricular volume, and/or hippocampal and perirhinal sizes at 14 ± 4 days and 36 ± 8 days post-induction. Recognition memory was assessed one week before and after kaolin induction. Histology and immunohistochemistry in the hippocampus were performed at sacrifice. RESULTS: The hippocampal width and the perirhinal cortex thickness were decreased (p < 0.05) in hydrocephalic pigs 14 ± 4 days post-induction. At sacrifice (36 ± 8 days post-induction), significant expansion of the cerebral ventricles was detected (p = 0.005) in hydrocephalic pigs compared with sham controls. The area of the dorsal hippocampus exhibited a reduction (p = 0.035) of 23.4% in the hydrocephalic pigs at sacrifice. Likewise, in hydrocephalic pigs, the percentages of neuronal precursor cells (doublecortin+ cells) and neurons decreased (p < 0.01) by 32.35%, and 19.74%, respectively, in the subgranular zone of the dorsal hippocampus. The percentage of reactive astrocytes (vimentin+) was increased (p = 0.041) by 48.7%. In contrast, microglial cells were found to decrease (p = 0.014) by 55.74% in the dorsal hippocampus in hydrocephalic pigs. There was no difference in the recognition index, a summative measure of learning and memory, one week before and after the induction of hydrocephalus. CONCLUSION: In untreated juvenile pigs, acquired hydrocephalus caused morphological alterations, reduced neurogenesis, and increased reactive astrocytosis in the hippocampus and perirhinal cortex.


Assuntos
Hidrocefalia , Caulim , Animais , Suínos , Caulim/efeitos adversos , Gliose/etiologia , Gliose/patologia , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/patologia , Hipocampo/patologia , Inflamação/patologia , Neurogênese
4.
Children (Basel) ; 9(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36291388

RESUMO

OBJECTIVE: One of the major causes of cerebral ventricular shunt failure is proximal catheter occlusion. We describe a novel ventricular cerebrospinal fluid (CSF) flow replicating system that assesses pressure and flow responses to varying degrees of catheter occlusion. METHODS: Ventricular catheter performance was assessed during conditions of partial and complete occlusion. The catheters were placed into a three-dimensionally-printed phantom ventricular replicating system. Artificial CSF was pumped through the ventricular system at a constant rate of 1 mL/min to mimic CSF flow, with the proximal end of the catheter in the phantom ventricle. Pressure transducer and flow rate sensors were used to measure intra-phantom pressure, outflow pressure, and CSF flow rates. The catheters were also inserted into silicone tubing and pressure was measured in the same manner for comparison with the phantom. RESULTS: Pressure measured in the ventricle phantom did not change when the outflow of the ventricular catheter was partially occluded. However, the intraventricular phantom pressure significantly increased when the outflow catheter was 100% occluded. The flow through the catheter showed no significant difference in rate with any degree of partial occlusion of the catheter. At the distal end of the partially occluded catheters, there was less pressure compared with the nonoccluded catheters. This difference in pressure in partially occluded catheters correlated with the percentage of catheter hole occlusion. CONCLUSIONS: Our model mimics the physiological dynamics of the CSF flow in partially and completely obstructed ventricular catheters. We found that partial occlusion of the catheter had no effect on the CSF flow rate, but did reduce outflow pressure from the catheter.

5.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293145

RESUMO

Hypertension is the leading cause of cardiovascular affection and premature death worldwide. The spontaneously hypertensive rat (SHR) is the most common animal model of hypertension, which is characterized by secondary ventricular dilation and hydrocephalus. Aquaporin (AQP) 1 and 4 are the main water channels responsible for the brain's water balance. The present study focuses on defining the expression of AQPs through the time course of the development of spontaneous chronic hypertension. We performed immunofluorescence and ELISA to examine brain AQPs from 10 SHR, and 10 Wistar−Kyoto (WKY) rats studied at 6 and 12 months old. There was a significant decrease in AQP1 in the choroid plexus of the SHR-12-months group compared with the age-matched control (p < 0.05). In the ependyma, AQP4 was significantly decreased only in the SHR-12-months group compared with the control or SHR-6-months groups (p < 0.05). Per contra, AQP4 increased in astrocytes end-feet of 6 months and 12 months SHR rats (p < 0.05). CSF AQP detection was higher in the SHR-12-months group than in the age-matched control group. CSF findings were confirmed by Western blot. In SHR, ependymal and choroidal AQPs decreased over time, while CSF AQPs levels increased. In turn, astrocytes AQP4 increased in SHR rats. These AQP alterations may underlie hypertensive-dependent ventriculomegaly.


Assuntos
Aquaporinas , Hidrocefalia , Hipertensão , Animais , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Aquaporina 1/metabolismo , Encéfalo/metabolismo , Hidrocefalia/metabolismo , Hipertensão/metabolismo , Água/metabolismo , Aquaporina 4/metabolismo , Aquaporinas/metabolismo
6.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142348

RESUMO

Aquaporin 4 (AQP4) is a cerebral glial marker that labels ependymal cells and astrocytes' endfeet and is the main water channel responsible for the parenchymal fluid balance. However, in brain development, AQP4 is a marker of glial stem cells and plays a crucial role in the pathophysiology of pediatric hydrocephalus. Gliogenesis characterization has been hampered by a lack of biomarkers for precursor and intermediate stages and a deeper understanding of hydrocephalus etiology is needed. This manuscript is a focused review of the current research landscape on AQP4 as a possible biomarker for gliogenesis and its influence in pediatric hydrocephalus, emphasizing reactive astrogliosis. The goal is to understand brain development under hydrocephalic and normal physiologic conditions.


Assuntos
Aquaporina 4 , Hidrocefalia , Astrócitos/metabolismo , Criança , Gliose , Humanos , Neuroglia/metabolismo , Água/metabolismo
7.
Acta Neuropathol Commun ; 10(1): 41, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346374

RESUMO

Hydrocephalus is a distension of the ventricular system associated with ventricular zone disruption, reactive astrogliosis, periventricular white matter ischemia, axonal impairment, and corpus callosum alterations. The condition's etiology is typically attributed to a malfunction in classical cerebrospinal fluid (CSF) bulk flow; however, this approach does not consider the unique physiology of CSF in fetal and perinatal patients. The parenchymal fluid contributes to the glymphatic system, and plays a fundamental role in pediatric hydrocephalus, with aquaporin 4 (AQP4) as the primary facilitator of these fluid movements. Despite the importance of AQP4 in the pathophysiology of hydrocephalus, it's expression in human fetal life is not well-studied. This manuscript systematically defines the brain expression of AQP4 in human brain development under control (n = 13) and hydrocephalic conditions (n = 3). Brains from 8 postconceptional weeks (PCW) onward and perinatal CSF from control (n = 2), obstructive (n = 6) and communicating (n = 6) hydrocephalic samples were analyzed through immunohistochemistry, immunofluorescence, western blot, and flow cytometry. Our results indicate that AQP4 expression is observed first in the archicortex, followed by the ganglionic eminences and then the neocortex. In the neocortex, it is initially at the perisylvian regions, and lastly at the occipital and prefrontal zones. Characteristic astrocyte end-feet labeling surrounding the vascular system was not established until 25 PCW. We also found AQP4 expression in a subpopulation of glial radial cells with processes that do not progress radially but, rather, curve following white matter tracts (corpus callosum and fornix), which were considered as glial stem cells (GSC). Under hydrocephalic conditions, GSC adjacent to characteristic ventricular zone disruption showed signs of early differentiation into astrocytes which may affect normal gliogenesis and contribute to the white matter dysgenesis. Finally, we found that AQP4 is expressed in the microvesicle fraction (p < 0.01) of CSF from patients with obstructive hydrocephalus. These findings suggest the potential use of AQP4 as a diagnostic and prognostic marker of pediatric hydrocephalus and as gliogenesis biomarker.


Assuntos
Hidrocefalia , Substância Branca , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encéfalo/patologia , Líquido Cefalorraquidiano , Criança , Humanos , Hidrocefalia/patologia , Substância Branca/patologia
8.
Fluids Barriers CNS ; 19(1): 17, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193620

RESUMO

BACKGROUND: Hydrocephalus is a neurological disease with an incidence of 80-125 per 100,000 births in the United States. Neuropathology comprises ventriculomegaly, periventricular white matter (PVWM) alterations, inflammation, and gliosis. We hypothesized that hydrocephalus in a pig model is associated with subventricular and PVWM cellular alterations and neuroinflammation that could mimic the neuropathology described in hydrocephalic infants. METHODS: Hydrocephalus was induced by intracisternal kaolin injections in 35-day old female pigs (n = 7 for tissue analysis, n = 10 for CSF analysis). Age-matched sham controls received saline injections (n = 6). After 19-40 days, MRI scanning was performed to measure the ventricular volume. Stem cell proliferation was studied in the Subventricular Zone (SVZ), and cell death and oligodendrocytes were examined in the PVWM. The neuroinflammatory reaction was studied by quantifying astrocytes and microglial cells in the PVWM, and inflammatory cytokines in the CSF. RESULTS: The expansion of the ventricles was especially pronounced in the body of the lateral ventricle, where ependymal disruption occurred. PVWM showed a 44% increase in cell death and a 67% reduction of oligodendrocytes. In the SVZ, the number of proliferative cells and oligodendrocyte decreased by 75% and 57% respectively. The decrease of the SVZ area correlated significantly with ventricular volume increase. Neuroinflammation occurred in the hydrocephalic pigs with a significant increase of astrocytes and microglia in the PVWM, and high levels of inflammatory interleukins IL-6 and IL-8 in the CSF. CONCLUSION: The induction of acquired hydrocephalus produced alterations in the PVWM, reduced cell proliferation in the SVZ, and neuroinflammation.


Assuntos
Hidrocefalia , Substância Branca , Animais , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Feminino , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/patologia , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/patologia , Doenças Neuroinflamatórias , Suínos , Substância Branca/patologia
9.
Children (Basel) ; 10(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36670569

RESUMO

The leading cause of ventricular shunt failure in pediatric patients is proximal catheter occlusion. Here, we evaluate various types of shunt catheters to assess in vitro cellular adhesion and obstruction. The following four types of catheters were tested: (1) antibiotic- and barium-impregnated, (2) polyvinylpyrrolidone, (3) barium stripe, and (4) barium impregnated. Catheters were either seeded superficially with astrocyte cells to test cellular adhesion or inoculated with cultured astrocytes into the catheters to test catheter performance under obstruction conditions. Ventricular catheters were placed into a three-dimensional printed phantom ventricular replicating system through which artificial CSF was pumped. Differential pressure sensors were used to measure catheter performance. Polyvinylpyrrolidone catheters had the lowest median cell attachment compared to antibiotic-impregnated (18 cells), barium stripe (17 cells), and barium-impregnated (21.5 cells) catheters after culture (p < 0.01). In addition, polyvinylpyrrolidone catheters had significantly higher flow in the phantom ventricular system (0.12 mL/min) compared to the antibiotic coated (0.10 mL/min), barium stripe (0.02 mL/min) and barium-impregnated (0.08 mL/min; p < 0.01) catheters. Polyvinylpyrrolidone catheters showed less cellular adhesion and were least likely to be occluded by astrocyte cells. Our findings can help suggest patient-appropriate proximal ventricular catheters for clinical use.

10.
Fluids Barriers CNS ; 18(1): 62, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952604

RESUMO

BACKGROUND: Intraventricular hemorrhage (IVH) and post-hemorrhagic hydrocephalus (PHH) have a complex pathophysiology involving inflammatory response, ventricular zone and cell-cell junction disruption, and choroid-plexus (ChP) hypersecretion. Increased cerebrospinal fluid (CSF) cytokines, extracellular matrix proteins, and blood metabolites have been noted in IVH/PHH, but osmolality and electrolyte disturbances have not been evaluated in human infants with these conditions. We hypothesized that CSF total protein, osmolality, electrolytes, and immune cells increase in PHH. METHODS: CSF samples were obtained from lumbar punctures of control infants and infants with IVH prior to the development of PHH and any neurosurgical intervention. Osmolality, total protein, and electrolytes were measured in 52 infants (18 controls, 10 low grade (LG) IVH, 13 high grade (HG) IVH, and 11 PHH). Serum electrolyte concentrations, and CSF and serum cell counts within 1-day of clinical sampling were obtained from clinical charts. Frontal occipital horn ratio (FOR) was measured for estimating the degree of ventriculomegaly. Dunn or Tukey's post-test ANOVA analysis were used for pair-wise comparisons. RESULTS: CSF osmolality, sodium, potassium, and chloride were elevated in PHH compared to control (p = 0.012 - < 0.0001), LGIVH (p = 0.023 - < 0.0001), and HGIVH (p = 0.015 - 0.0003), while magnesium and calcium levels were higher compared to control (p = 0.031) and LGIVH (p = 0.041). CSF total protein was higher in both HGIVH and PHH compared to control (p = 0.0009 and 0.0006 respectively) and LGIVH (p = 0.034 and 0.028 respectively). These differences were not reflected in serum electrolyte concentrations nor calculated osmolality across the groups. However, quantitatively, CSF sodium and chloride contributed 86% of CSF osmolality change between control and PHH; and CSF osmolality positively correlated with CSF sodium (r, p = 0.55,0.0015), potassium (r, p = 0.51,0.0041), chloride (r, p = 0.60,0.0004), but not total protein across the entire patient cohort. CSF total cells (p = 0.012), total nucleated cells (p = 0.0005), and percent monocyte (p = 0.016) were elevated in PHH compared to control. Serum white blood cell count increased in PHH compared to control (p = 0.042) but there were no differences in serum cell differential across groups. CSF total nucleated cells also positively correlated with CSF osmolality, sodium, potassium, and total protein (p = 0.025 - 0.0008) in the whole cohort. CONCLUSIONS: CSF osmolality increased in PHH, largely driven by electrolyte changes rather than protein levels. However, serum electrolytes levels were unchanged across groups. CSF osmolality and electrolyte changes were correlated with CSF total nucleated cells which were also increased in PHH, further suggesting PHH is a neuro-inflammatory condition.


Assuntos
Hemorragia Cerebral Intraventricular/líquido cefalorraquidiano , Líquido Cefalorraquidiano/química , Hidrocefalia/líquido cefalorraquidiano , Doenças do Prematuro/líquido cefalorraquidiano , Hemorragia Cerebral Intraventricular/complicações , Feminino , Humanos , Hidrocefalia/etiologia , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Estudos Retrospectivos
11.
Fluids Barriers CNS ; 18(1): 49, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749745

RESUMO

BACKGROUND: Many animal models have been used to study the pathophysiology of hydrocephalus; most of these have been rodent models whose lissencephalic cerebral cortex may not respond to ventriculomegaly in the same way as gyrencephalic species and whose size is not amenable to evaluation of clinically relevant neurosurgical treatments. Fewer models of hydrocephalus in gyrencephalic species have been used; thus, we have expanded upon a porcine model of hydrocephalus in juvenile pigs and used it to explore surgical treatment methods. METHODS: Acquired hydrocephalus was induced in 33-41-day old pigs by percutaneous intracisternal injections of kaolin (n = 17). Controls consisted of sham saline-injected (n = 6) and intact (n = 4) animals. Magnetic resonance imaging (MRI) was employed to evaluate ventriculomegaly at 11-42 days post-kaolin and to plan the surgical implantation of ventriculoperitoneal shunts at 14-38-days post-kaolin. Behavioral and neurological status were assessed. RESULTS: Bilateral ventriculomegaly occurred post-induction in all regions of the cerebral ventricles, with prominent CSF flow voids in the third ventricle, foramina of Monro, and cerebral aqueduct. Kaolin deposits formed a solid cast in the basal cisterns but the cisterna magna was patent. In 17 untreated hydrocephalic animals. Mean total ventricular volume was 8898 ± 5917 SD mm3 at 11-43 days of age, which was significantly larger than the baseline values of 2251 ± 194 SD mm3 for 6 sham controls aged 45-55 days, (p < 0.001). Past the post-induction recovery period, untreated pigs were asymptomatic despite exhibiting mild-moderate ventriculomegaly. Three out of 4 shunted animals showed a reduction in ventricular volume after 20-30 days of treatment, however some developed ataxia and lethargy, from putative shunt malfunction. CONCLUSIONS: Kaolin induction of acquired hydrocephalus in juvenile pigs produced an in vivo model that is highly translational, allowing systematic studies of the pathophysiology and clinical treatment of hydrocephalus.


Assuntos
Modelos Animais de Doenças , Hidrocefalia/patologia , Hidrocefalia/cirurgia , Derivação Ventriculoperitoneal , Fatores Etários , Animais , Hidrocefalia/induzido quimicamente , Hidrocefalia/diagnóstico por imagem , Caulim/administração & dosagem , Imageamento por Ressonância Magnética , Suínos
12.
Neurology ; 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799460

RESUMO

BACKGROUND AND OBJECTIVES: The neurological deficits of neonatal post-hemorrhagic hydrocephalus (PHH) have been linked to periventricular white matter injury. To improve understanding of PHH-related injury, diffusion basis spectrum imaging (DBSI) was applied in neonates, modeling axonal and myelin integrity, fiber density, and extra-fiber pathologies. Objectives included characterizing DBSI measures in periventricular tracts, associating measures with ventricular size, and examining MRI findings in the context of post-mortem white matter histology from similar cases. METHODS: A prospective cohort of infants born very preterm underwent term equivalent MRI, including infants with PHH, high-grade intraventricular hemorrhage without hydrocephalus (IVH), and controls (VPT). DBSI metrics extracted from the corpus callosum, corticospinal tracts, and optic radiations included fiber axial diffusivity, fiber radial diffusivity, fiber fractional anisotropy, fiber fraction (fiber density), restricted fractions (cellular infiltration), and non-restricted fractions (vasogenic edema). Measures were compared across groups and correlated with ventricular size. Corpus callosum postmortem immunohistochemistry in infants with and without PHH assessed intra- and extra-fiber pathologies. RESULTS: Ninety-five infants born very preterm were assessed (68 VPT, 15 IVH, 12 PHH). Infants with PHH had the most severe white matter abnormalities and there were no consistent differences in measures between IVH and VPT groups. Key tract-specific white matter injury patterns in PHH included reduced fiber fraction in the setting of axonal and/or myelin injury, increased cellular infiltration, vasogenic edema, and inflammation. Specifically, measures of axonal injury were highest in the corpus callosum; both axonal and myelin injury were observed in the corticospinal tracts; and axonal and myelin integrity were preserved in the setting of increased extra-fiber cellular infiltration and edema in the optic radiations. Increasing ventricular size correlated with worse DBSI metrics across groups. On histology, infants with PHH had high cellularity, variable cytoplasmic vacuolation, and low synaptophysin marker intensity. DISCUSSION: PHH was associated with diffuse white matter injury, including tract-specific patterns of axonal and myelin injury, fiber loss, cellular infiltration, and inflammation. Larger ventricular size was associated with greater disruption. Postmortem immunohistochemistry confirmed MRI findings. These results demonstrate DBSI provides an innovative approach extending beyond conventional diffusion MRI for investigating neuropathological effects of PHH on neonatal brain development.

13.
Fluids Barriers CNS ; 17(1): 46, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690048

RESUMO

BACKGROUND: Severe intraventricular hemorrhage (IVH) is one of the most devastating neurological complications in preterm infants, with the majority suffering long-term neurological morbidity and up to 50% developing post-hemorrhagic hydrocephalus (PHH). Despite the importance of this disease, its cytopathological mechanisms are not well known. An in vitro model of IVH is required to investigate the effects of blood and its components on the developing ventricular zone (VZ) and its stem cell niche. To address this need, we developed a protocol from our accepted in vitro model to mimic the cytopathological conditions of IVH in the preterm infant. METHODS: Maturing neuroepithelial cells from the VZ were harvested from the entire lateral ventricles of wild type C57BL/6 mice at 1-4 days of age and expanded in proliferation media for 3-5 days. At confluence, cells were re-plated onto 24-well plates in differentiation media to generate ependymal cells (EC). At approximately 3-5 days, which corresponded to the onset of EC differentiation based on the appearance of multiciliated cells, phosphate-buffered saline for controls or syngeneic whole blood for IVH was added to the EC surface. The cells were examined for the expression of EC markers of differentiation and maturation to qualitatively and quantitatively assess the effect of blood exposure on VZ transition from neuroepithelial cells to EC. DISCUSSION: This protocol will allow investigators to test cytopathological mechanisms contributing to the pathology of IVH with high temporal resolution and query the impact of injury to the maturation of the VZ. This technique recapitulates features of normal maturation of the VZ in vitro, offering the capacity to investigate the developmental features of VZ biogenesis.


Assuntos
Hemorragia Cerebral Intraventricular/patologia , Doenças do Prematuro/patologia , Ventrículos Laterais/patologia , Células Neuroepiteliais/patologia , Animais , Diferenciação Celular , Células Cultivadas , Técnicas In Vitro , Recém-Nascido Prematuro , Camundongos Endogâmicos C57BL , Modelos Neurológicos
14.
J Neuropathol Exp Neurol ; 79(6): 626-640, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32417932

RESUMO

Choroid plexus (CP) may aid brain development and repair by secreting growth factors and neurotrophins for CSF streaming to ventricular and subventricular zones. Disrupted ventricular/subventricular zone progenitors and stem cells lead to CNS maldevelopment. Exploring models, we organ cultured the CP and transplanted fresh CP into a lateral ventricle of postnatal hydrocephalic (hyHTx) and nonhydrocephalic (nHTx) rats. After 60 days in vitro, the cultured choroid ependyma formed spherical rings with beating cilia. Cultured CP expressed endocytotic caveolin 1 and apical aquaporin 1 and absorbed horseradish peroxidase from medium. Transthyretin secretory protein was secreted by organ-cultured CP into medium throughout 60 days in vitro. Fresh CP, surviving at 1 week after lateral ventricle implantation of nHTx or hyHTx did not block CSF flow. Avascular 1-week transplants in vivo expressed caveolin 1, aquaporin 1, and transthyretin, indicating that grafted CP may secrete trophic proteins but not CSF. Our findings encourage further exploration on CP organ culture and grafting for translational strategies. Because transplanted CP, though not producing CSF, may secrete beneficial molecules for developing brain injured by hydrocephalus, we propose that upon CP removal in hydrocephalus surgery, the fractionated tissue could be transplanted back (ventricular autograft).


Assuntos
Plexo Corióideo , Hidrocefalia/cirurgia , Ventrículos Laterais/cirurgia , Enxerto Vascular/métodos , Animais , Modelos Animais de Doenças , Técnicas de Cultura de Órgãos , Ratos , Resultado do Tratamento
15.
Cell Tissue Res ; 380(1): 59-66, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31900665

RESUMO

We have tested whether the lack of chromogranins (Cgs) A and B could provoke CNS disorders when combined with an excess of dopamine. We chronically treated (over 6 months) mice lacking both chromogranins A and B (Cgs-KO) with a low oral dosage of L-DOPA/benserazide (10/2.5 mg/kg). Motor performance in the rota-rod test, open field activity, and metabolic cages indicated a progressive impairment in motor coordination in these mice, and an increase in rearing behavior, which was accompanied by an increase in DA within the substantia nigra. We conclude that mild chronic L-DOPA treatment does not produce nigro-striatal toxicity that could be associated with parkinsonism, neither in control nor Cgs-KO mice. Rather, Cgs-KO mice exhibit behaviors compatible with an amphetamine-like effect, probably caused by the excess of catecholamines in the CNS.


Assuntos
Cromograninas/efeitos adversos , Dopaminérgicos/uso terapêutico , Levodopa/uso terapêutico , Atividade Motora/efeitos dos fármacos , Animais , Dopaminérgicos/farmacologia , Levodopa/farmacologia , Masculino , Camundongos
16.
J Neurosurg Pediatr ; : 1-8, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31323624

RESUMO

OBJECTIVE: Traditionally, diffusion MRI (dMRI) has been performed in parallel with high-resolution conventional MRI, which requires long scan times and may require sedation or general anesthesia in infants and young children. Conversely, fast brain MRI permits image acquisition without the need for sedation, although its short pulse sequences, susceptibility to motion artifact, and contrast resolution have limited its use to assessing ventricular size or major structural variations. Here, the authors demonstrate the feasibility of leveraging a 3-direction fast brain MRI protocol to obtain reliable dMRI measures. METHODS: Fast brain MRI with 3-direction dMRI was performed in infants and children before and after hydrocephalus treatment. Regions of interest in the posterior limbs of the internal capsules (PLICs) and the genu of the corpus callosum (gCC) were drawn on diffusion-weighted images, and mean diffusivity (MD) data were extracted. Ventricular size was determined by the frontal occipital horn ratio (FOHR). Differences between and within groups pre- and posttreatment, and FOHR-MD correlations were assessed. RESULTS: Of 40 patients who met inclusion criteria (median age 27.5 months), 15 (37.5%), 17 (42.5%), and 8 (20.0%) had posthemorrhagic hydrocephalus (PHH), congenital hydrocephalus (CH), or no intracranial abnormality (controls), respectively. A hydrocephalus group included both PHH and CH patients. Prior to treatment, the FOHR (p < 0.001) and PLIC MD (p = 0.027) were greater in the hydrocephalus group than in the controls. While the mean gCC MD in the hydrocephalus group (1.10 × 10-3 mm2/sec) was higher than that of the control group (0.98), the difference was not significant (p = 0.135). Following a median follow-up duration of 14 months, decreases in FOHR, PLIC MD, and gCC MD were observed in the hydrocephalus group and were similar to those in the control group (p = 0.107, p = 0.702, and p = 0.169, respectively). There were no correlations identified between FOHR and MDs at either time point. CONCLUSIONS: The utility of fast brain MRI can be extended beyond anatomical assessments to obtain dMRI measures. A reduction in PLIC and gCC MD to levels similar to those of controls was observed within 14 months following shunt surgery for hydrocephalus in PHH and CH infants. Further studies are required to assess the role of fast brain dMRI for assessing clinical outcomes in pediatric hydrocephalus patients.

17.
J Neuropathol Exp Neurol ; 78(7): 641-647, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039249

RESUMO

The choroid plexus (ChP) is involved in the production of cerebrospinal fluid (CSF) and is intimately related to CSF physiopathology. Aquaporin-1 (AQP1) is the water channel directly implicated in CSF production and a potential therapeutic target in the management of CSF circulation disorders. Pathologies that present ventriculomegaly are associated with defective CSF turnover and AQPs are involved in both the production and reabsorption of CSF. This work examines the levels of AQP1 and its dynamics in ventriculomegaly conditions such as congenital hydrocephalus (communicating and obstructive) or type II lissencephaly versus control. We specifically address the expression of AQP1 in the CSF of 16 term-pregnancy infants where it was found to be significantly increased in obstructive cases when compared with communicating hydrocephalus or control patients. We also defined histologically the expression of AQP1 in the ChP from 6 nonsurvival preterm-pregnancy infants ranging ages between 20 and 25 gestational weeks in which AQP1 was mainly expressed at the apical pole of the ChP epithelium (ChPE) in control and lissencephalic patients. AQP1 expression from the Chiari malformation case showed an inverted polarity being expressed in the basal pole of the ChPE colocalizing with the glucose transporter 1 where this transporter is naturally located.


Assuntos
Aquaporina 1/biossíntese , Aquaporina 1/líquido cefalorraquidiano , Malformação de Arnold-Chiari/metabolismo , Malformação de Arnold-Chiari/patologia , Plexo Corióideo/metabolismo , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Adulto , Biomarcadores/líquido cefalorraquidiano , Ventrículos Cerebrais/patologia , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Lisencefalia/patologia , Gravidez
18.
Cells ; 7(11)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428541

RESUMO

Aquaporin 1 (AQP1) and aquaporin 4 (AQP4) have been identified in the eye as playing an essential role in the formation of the aqueous humor along with the Na⁺/K⁺ ATPase pump. Different authors have described the relationship between blood pressure, aqueous humor production, and intraocular pressure with different conclusions, with some authors supporting a positive correlation between blood pressure and intraocular pressure while others disagree. The aim of this work was to study the effect of high blood pressure on the proteins involved in the production of aqueous humor in the ciliary body (CB) and iris. For this purpose, we used the eyes of spontaneously hypertensive rats (SHR) and their control Wistar-Kyoto rats (WKY). Immunofluorescence was performed in different eye structures to analyze the effects of hypertension in the expression of AQP1, AQP4, and the Na⁺/K⁺ ATPase α1 and α2 subunits. The results showed an increase in AQP1 and Na⁺/K⁺ ATPase α1 and a decrease in AQP4 and Na⁺/K⁺ ATPase α2 in the CB of SHR, while an increase in AQP4 and no significant differences in AQP1 were found in the iris. Therefore, systemic hypertension produced changes in the proteins implicated in the movement of water in the CB and iris that could influence the production rate of aqueous humor, which would be affected depending on the duration of systemic hypertension.

19.
J Neuropathol Exp Neurol ; 77(9): 803-813, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30032242

RESUMO

Intraventricular hemorrhage (IVH) is the most common cause of pediatric hydrocephalus in North America but remains poorly understood. Cell junction-mediated ventricular zone (VZ) disruption and astrogliosis are associated with the pathogenesis of congenital, nonhemorrhagic hydrocephalus. Recently, our group demonstrated that VZ disruption is also present in preterm infants with IVH. On the basis of this observation, we hypothesized that blood triggers the loss of VZ cell junction integrity and related cytopathology. In order to test this hypothesis, we developed an in vitro model of IVH by applying syngeneic blood to cultured VZ cells obtained from newborn mice. Following blood treatment, cells were assayed for N-cadherin-dependent adherens junctions, ciliated ependymal cells, and markers of glial activation using immunohistochemistry and immunoblotting. After 24-48 hours of exposure to blood, VZ cell junctions were disrupted as determined by a significant reduction in N-cadherin expression (p < 0.05). This was also associated with significant decrease in multiciliated cells and increase in glial fibrillary acid protein-expressing cells (p < 0.05). These observations suggest that, in vitro, blood triggers VZ cell loss and glial activation in a pattern that mirrors the cytopathology of human IVH and supports the relevance of this in vitro model to define injury mechanisms.


Assuntos
Sangue , Hemorragia Cerebral Intraventricular/etiologia , Ventrículos Cerebrais/patologia , Junções Intercelulares/patologia , Neuroglia/patologia , Animais , Animais Recém-Nascidos , Caderinas/metabolismo , Caspase 3/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Hidrocefalia , Técnicas In Vitro , Junções Intercelulares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Técnicas de Cultura de Órgãos , Ensaio de Radioimunoprecipitação
20.
Pediatr Neurosurg ; 52(6): 426-435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797007

RESUMO

Hydrocephalus (HC) is a common, debilitating neurological condition that requires urgent clinical decision-making. At present, neurosurgeons rely heavily on a patient's history, physical examination findings, neuroimaging, and clinical judgment to make the diagnosis of HC or treatment failure (e.g., shunt malfunction). Unfortunately, these tools, even in combination, do not eliminate subjectivity in clinical decisions. In order to improve the management of infants and children with HC, there is an urgent need for new biomarkers to complement currently available tools and enable clinicians to confidently establish the diagnosis of HC, assess therapeutic efficacy/treatment failure, and evaluate current and future developmental challenges, so that every child has access to the resources they need to optimize their outcome and quality of life.


Assuntos
Biomarcadores , Líquido Cefalorraquidiano/metabolismo , Hidrocefalia/cirurgia , Hemorragia Cerebral/complicações , Humanos , Hidrocefalia/etiologia , Lactente , Recém-Nascido , Doenças do Prematuro/cirurgia , Pediatria , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...